Two turbulent regimes on the Sun

Heading: 
1Kozak, LV, 2Kostyk, RI, 3Cheremnykh, OK
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(2):22-29
Start Page: Solar Physics
Language: Russian
Abstract: 

It is found from our observations performed with the 70-cm vacuum tower telescope VTT in Isanie (Tenerife Island, Spain) that turbulent processes in the solar photosphere are characterized by two different spectra of turbulence. The first spectrum is the well-known Kolmohorov spectrum describing the plasma with zero mean magnetic field. The second one is the Kraichnan spectrum with nonzero mean magnetic field. Transition from one spectrum type to another occurs at a scale of 3 Mm. This scale corresponds to meso-granulation one, which points to the transition to large-scale self-organizing magnetic structures.

Keywords: photosphere, Sun, turbulence
References: 

1.V. P. Budaev, S. P. Savin, and L. M. Zelenyi, “Investigation of Intermittency and Generalized Self-Similarity of Turbulent Boundary Layers in Laboratory and Magnetospheric Plasmas: towards a Quantitative Definition of Plasma Transport Features,” Usp. Fiz. Nauk 181, 905–952 (2011).
https://doi.org/10.3367/UFNr.0181.201109a.0905

2.B. B. Kadomtsev, “Plasma Turbulence,” in Questions in Plasma Theory, Ed. by M.A. Leontovich (Atomizdat, Moscow, 1964) [in Russian].

3.L. V. Kozak and A. T. Lui, “Statistical Analysis of Plasma Turbulence Based on Satellite Magnetic Field Measurements,” Kin. Phys. Celest. Bodies 24(4), 209–214 (2008).
https://doi.org/10.3103/S0884591308040041

4.L. V. Kozak, S. P. Savin, V. P. Budaev, et al., “Character of Turbulence in the Boundary Regions of the Earth’s Magnetosphere,” Geomagn. Aeron. 52(4), 445–455 (2012).
https://doi.org/10.1134/S0016793212040093

5.A. N. Kolmogorov, “The Local Structure of Turbulence in Incompressible Viscous Fluids at Very Large Reynolds Numbers,” Dokl. Akad. Nauk SSSR 30(4), 299–303 (1941).

6.E. A. Novikov and R. W. Stewart, “Intermittency of Turbulence and Spectrum of Fluctuations in Energy Dissipation,” Izv. Akad. Nauk SSSR. Ser. Geofiz. 3, 408–413 (1964).

7.V. I. Petviashvii and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989) [in Russian].

8.R. Benzi, S. Ciliberto, R. Tripiccione, et al., “Extended Self-Similarity in Turbulent Flows,” Phys. Rev. E 48, 29–32 (1993).
https://doi.org/10.1103/PhysRevE.48.R29

9.G. Consolini, M. Kretzschmar, A. T. Y. Lui, et al., “On the Magnetic Field Fluctuations during Magnetospheric Tail Current Disruption: A Statistical Approach,” J. Geophys. Res. 110, A07202 (2005). doi:10.1029/2004JA010947
https://doi.org/10.1029/2004JA010947

10.R. I. Kostyk and E. V. Khomenko, “The Effect of Acoustic Waves on Spectral-Line Profiles in the Solar Atmosphere: Observations and Theory,” Astron. Rep. 46(12), 925–931 (2002).
https://doi.org/10.1134/1.1522081

11.R. H. Kraichnan, “Internal-Range Spectrum of Hydromagnetic Turbulence,” Phys. Fluids 8, 1385–1387 (1965).
https://doi.org/10.1063/1.1761412

12.S. Savin, E. Amata, L. Zelenyi, et al., “High Kinetic Energy Jets in the Earth’s Magnetosheath: Implications for Plasma Dynamics and Anomalous Transport,” JETP Letters 87, 593–599 (2008).
https://doi.org/10.1134/S0021364008110015

13.E. H. Schroter, D. Soltau, and E. Wiehr, “The German Solar Telescopes at the Observatorio del Teide,” Vistas Astron. 28, 519–525 (1985).
https://doi.org/10.1016/0083-6656(85)90073-X

14.R. T. Stebbins and P. R. Goode, “Waves in the Solar Photosphere,” Solar. Phys 110, 237–248 (1987).
https://doi.org/10.1007/BF00206421