Determination of abundances in atmospheres of F-, G-, K-dwarfs

1Pavlenko, YV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(2):24-36
https://doi.org/10.15407/kfnt2017.02.024
Start Page: Physics of Stars and Interstellar Medium
Language: Russian
Abstract: 

Algorithm of the determination of the chemical composition of stars of spectral classes F, G, K using fits to the observed lines or selected parts the blended lines. The technique allows us to determine the parameters atmosphere, i.e. acceleration of gravity, microscopic turbulence speed, the rotation speed of the star, and the content of elements for a given effective temperature of the star. At each stage of the iterative process the atmosphere model calculated for the new set of input data. The results of the application of the procedure for the analysis of the spectra of the Sun (G2 V) and HD 101348 (G3 V) are discussed.

Keywords: atmospheric parameters, chemical composition, dwarfs
References: 

1.A. S. Gadun and V. A. Sheminova, Preprint ITF-88-87R (Inst. of Theoretical Physics, Ukrainian SSR Academy of Sciences, Kiev, 1988).

2.D. F. Gray, The Observation and Analysis of Stellar Photospheres (Wiley, New York, 1976; Mir, Moscow, 1980).

3.Ya. V. Pavlenko, “Collision-induced radiation absorption in atmospheres of late-type stars,” Astron. Rep. 60, 509–516 (2016).
https://doi.org/10.1134/S1063772916040089

4.E. Anders and N. Grevesse, “Abundances of the elements: Meteoritic and solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).
https://doi.org/10.1016/0016-7037(89)90286-X

5.M. Asplund, N. Grevesse, and A. J. Sauval, “The solar chemical composition,” in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in Honor of David L. Lambert: Proc. Symp., Austin, TX, June 17–19, 2004, Ed. by T. G. Barnes and F. N. Bash, in Ser. ASP Conference Series, Vol. 336 (Astron. Soc. Pacif., San Francisco, 2005), pp. 25–38.

6.T. Bensby, S. Feltzing, and M. S. Oey, “Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood,” Astron. Astrophys. 562, A71 (2014).
https://doi.org/10.1051/0004-6361/201322631

7.J. C. Bond, D. S. Lauretta, C. G. Tinney, et al., “Beyond the iron peak: r- and s-process elemental abundances in stars with planets,” Astrophys. J. 682, 1234–1247 (2008).
https://doi.org/10.1086/589236

8.R. Caimmi, “A simple multistage closed-(box+reservoir) model of chemical evolution,” Serb. Astron. J. 183, 37 (2011).
https://doi.org/10.2298/SAJ1183037C

9.F. Castelli, “Kurucz’s WIDTH code and INPWIDTH,” Mem. Soc. Astron. Ital. Suppl. 8, 44–60 (2005).

10.G. Gonzalez, “The stellar metallicity—giant planet connection,” Mon. Not. R. Astron. Soc. 285, 403–412 (1997).
https://doi.org/10.1093/mnras/285.2.403

11.M. Haywood, “A revision of the solar neighbourhood metallicity distribution,” Mon. Not. R. Astron. Soc. 325, 1365–1382 (2001).
https://doi.org/10.1046/j.1365-8711.2001.04510.x

12.H. Holweger, C. Heise, and M. Kock, “The abundance of iron in the Sun derived from photospheric Fe II lines,” Astron. Astrophys. 232, 510–515 (1990).

13.S. Ida and D. N. C. Lin, “Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths,” Astrophys. J. 685, 584–595 (2008).
https://doi.org/10.1086/590401

14.O. M. Ivanyuk, J. S. Jenkins, Ya. V. Pavlenko, et al., “The metal rich abundance pattern — Spectroscopic properties and abundances for 107 main-sequence stars,” Mon. Not. R. Astron. Soc. (2017) (in press).
https://doi.org/10.1093/mnras/stx647

15.J. S. Jenkins, H. R. A. Jones, Y. Pavlenko, et al., “Metallicities and activities of southern stars,” Astron. Astrophys. 485, 571–584 (2008).
https://doi.org/10.1051/0004-6361:20078611

16.R. Kurucz, I. Furenlid, J. Brauld, and L. Testerman, “Solar flux atlas from 296 to 1300 nm,” in National Solar Observatory Atlas (Natl. Sol. Obs., Sunspot, NM, 1984), pp. 1–344.

17.M. Livio and J. E. Pringle, “Metallicity, planetary formation and migration,” Mon. Not. R. Astron. Soc. 346, 42–44 (2003).
https://doi.org/10.1111/j.1365-2966.2003.07318.x

18.J. C. Martin, “The origins and evolutionary status of B stars found far from the Galactic plane. I. Composition and spectral features,” Astron. J. 128, 2474–2500 (2004).
https://doi.org/10.1086/425045

19.L. Mashonkina, T. Gehren, J.-R. Shi, et al., “A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars,” Astron. Astrophys. 528, A87 (2011).
https://doi.org/10.1051/0004-6361/201015336

20.V. Neves, N. C. Santos, S. G. Sousa, et al., “Chemical abundances of 451 stars from the HARPS GTO planet search program. Thin disc, thick disc, and planets,” Astron. Astrophys. 497, 563–581 (2009).
https://doi.org/10.1051/0004-6361/200811328

21.Y. V. Pavlenko, “A “lithium test” and modeling of lithium lines in late-type M dwarfs: Teide1,” Astron. Rep. 41, 537–548 (1997).

22.Ya. V. Pavlenko, “Synthetic spectra and abundances of elements in the atmospheres of F-K stars,” Kinematics Phys. Celestial Bodies 18, 32–35 (2002).

23.Ya. V. Pavlenko, “Model atmospheres of red giants,” Astron. Rep. 47, 59–67 (2003).
https://doi.org/10.1134/1.1538496

24.Ya. V. Pavlenko, J. S. Jenkins, H. R. A. Jones, et al., “Effective temperatures, rotational velocities, microturbulent velocities and abundances in the atmospheres of the Sun, HD 1835 and HD 10700,” Mon. Not. R. Astron. Soc. 422, 542–552 (2012).
https://doi.org/10.1111/j.1365-2966.2012.20629.x

25.Y. Pavlenko, M. R. Zapatero Osorio, and R. Rebolo, “On the interpretation of the optical spectra of L-type dwarfs,” Astron. Astrophys. 355, 245–255 (2000).

26.Y. Pavlenko, Z. H. Zhang, M. C. Gálvez-Ortiz, et al., “Probing M subdwarf metallicity with an esdK5+esdM5.5 binary,” Astron. Astrophys. 582, A92 (2015).
https://doi.org/10.1051/0004-6361/201526810

27.M. J. Pecaut and T. E. Mamajek, “Intrinsic colors, temperatures, and bolometric corrections of pre-mainsequence stars,” Astrophys. J., Suppl. Ser. 208, 9 (2014).
https://doi.org/10.1088/0067-0049/208/1/9

28.T. Ryabchikova, N. Piskunov, R. L. Kurucz, et al., “A major upgrade of the VALD database,” Phys. Scr. 90, 054005 (2015).
https://doi.org/10.1088/0031-8949/90/5/054005

29.T. Ryabchikova, N. Piskunov, Yu. Pakhomov, et al., “Accuracy of atmospheric parameters of FGK dwarfs determined by spectrum fitting,” Mon. Not. R. Astron. Soc. 456, 1221–1234 (2016).
https://doi.org/10.1093/mnras/stv2725

30.N. C. Santos, S. Udry, F. Bouchy, et al., “ELODIE metallicity-biased search for transiting Hot Jupiters. V. An intermediate-period Jovian planet orbiting HD 45652,” Astron. Astrophys. 487, 369–372 (2008).
https://doi.org/10.1051/0004-6361:200809402

31.L. Searle and W. L. W. Sargent, “Inferences from the composition of two dwarf blue galaxies,” Astrophys. J. 173, 25–33 (1972).
https://doi.org/10.1086/151398

32.N. Shchukina, A. Sukhorukov, and J. Trujillo Bueno, “Impact of surface dynamo magnetic fields on the solar abundance of the CNO elements,” Astron. Astrophys. 586, A145 (2016).
https://doi.org/10.1051/0004-6361/201526452

33.N. Shchukina and J. Trujillo Bueno, “The impact of surface dynamo magnetic fields on the solar iron abundance,” Astron. Astrophys. 579, A112 (2015).
https://doi.org/10.1051/0004-6361/201425569

34.C. Sneden, “The nitrogen abundance of the very metal-poor star HD 122563,” Astrophys. J. 184, 839–849 (1973).
https://doi.org/10.1086/152374

35.J. F. Valenti and D. A. Fischer, “Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs,” Astrophys. J., Suppl. Ser. 159, 141–166 (2005).
https://doi.org/10.1086/430500

36.G. Worthey, B. Dorman, and L. A. Jones, “The G dwarf problem exists in other galaxies,” Astron. J. 112, 948–953 (1996).
https://doi.org/10.1086/118068