Determination of crustal strain in the north region of Ukraine based on the GNSS observations analysis results

1Ishchenko, MV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(6):69-78
https://doi.org/10.15407/kfnt2017.06.069
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

At the GNSS data analysis centre of the Main Astronomical Observatory NAS of Ukraine crustal strain were obtained with the use method of triangles, whose vertices are the GNSS stations. Crustal strain estimations was carried out using the GPS Triangle Strain Calculator, developed by UNAVCO software.

Keywords: crustal strain, GNSS data analysis, method of triangles, movements of GNSS stations
References: 

1.A.-M. S. Mohamed, A. Hosny, N. Abou-Aly, M. Saleh, and A. Rayan, “Preliminary crustal deformation model deduced from GPS and earthquakes’ data at Abu-Dabbab area, Eastern Desert, Egypt,” NRIAG J. Astron. Geophys. 2, 67–76 (2013).
https://doi.org/10.1016/j.nrjag.2013.06.010

2.Bernese GNSS Software Version 5.2, Ed. by R. Dach, S. Lutz, P. Walser, and P. Fridez (Univ. of Bern, Bern, 2015).

3.J. Bogusz, A. Klos, M. Figurski, M. Jarosinski, and B. Kontny, “Investigation of the reliability of local train analysis by means of the triangle modelling,” Acta Geodyn. Geomater. 10, 293–305 (2013). doi 10.13168/ AGG.2013.0029
https://doi.org/10.13168/AGG.2013.0029

4.C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein, “Current plate motions,” Geophys. J. Int. 101, 425–478 (1990).
https://doi.org/10.1111/j.1365-246X.1990.tb06579.x

5.C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein, “Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions,” Geophys. Res. Lett. 21, 2191–2194 (1994).
https://doi.org/10.1029/94GL02118

6.H. Dreves, “How to fix the geodetic datum for reference frames in geosciences applications?,” in Geodesy for Planet Earth (Springer-Verlag, Berlin, 2011), in Ser.: International Association of Geodesy Symposia, Vol. 136, pp. 67–76. doi 10.1007/978-3-642-20338-1_910.1007/978-3-642-20338-1_9
https://doi.org/10.1007/978-3-642-20338-1_9

7.F. Lyard, F. Lefvre, T. Letellier, and O. Francis, “Modelling the global ocean tides: Modern insights from FES2004,” Ocean Dyn. 56, 394–415 (2006).
https://doi.org/10.1007/s10236-006-0086-x

8.D. D. McCarthy and G. Petit, IERS Conventions (2003), IERS Technical Note 32 (Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 2004).

9.A. Niell, “Global mapping functions for the atmosphere delay at radio wavelengths,” J. Geophys. Res.: Solid Earth 101, 3227–3246 (1996).
https://doi.org/10.1029/95JB03048

10.J. Saastamoinen, “Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites,” in The Use of Artificial Satellites for Geodesy (American Geophysical Union, Washington, DC, 1972), in Ser.: Geophysics Monogram Series, Vol. 15, pp. 244–251.

11.E. M. Standish, JPL Planetary and Lunar Ephemerides, DE405/LE405, NASA Jet Propulsion Laboratory Interoffice Memorandum No. IOM 312.F-98-048 (NASA, Washington, DC, 1998).

12.P. Steigenberger, U. Hugentobler, S. Lutz, R. Dach, “CODE contribution to the 2nd IGS reprocessing,” in Proc. IGS Workshop, Pasadena, June 23–27, 2014. http://www.igs.org/workshop/posters.