Turbulence and rotation in solar-type stars
1Sheminova, VA 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(3):44-66 |
https://doi.org/10.15407/kfnt2019.03.044 |
Start Page: Physics of Stars and Interstellar Medium |
Language: Russian |
Abstract: Microturbulence, macroturbulence, rotation along with thermal motions expand the profiles of lines in stellar spectra. Reliable data on the velocity distribution of turbulent motions in stellar atmospheres are necessary to perform an unambiguous interpretation of the spectra of solar-type stars in studies and searches for exoplanets. Stellar spectra with a high spectral resolution of 115 000 obtained with the HARPS spectrograph make it possible to investigate the turbulent velocities and their dependencies with depth in the photosphere of stars. We performed Fourier analysis for 17 iron lines in the spectra of 13 stars with effective temperatures of 4900...6200 K and the gravity of 3.9...5.0, as well as in the spectrum of the Sun as stars. Models of star atmospheres were taken from the MARCS database. The standard concept of isotropic Gaussian microturbulence was assumed in this analysis. The satisfactory fit of the synthesized profiles of spectral lines with observations confirmed the reliability of the Fourier method. As a result, we obtained the most probable values of the turbulent velocities, the rotation velocity, the iron abundance and their dependencies with depth in the photosphere layers. Microturbulence does not show a significant dependence with depth, while macroturbulence clearly depends on depth. The macroturbulent velocity grows with depth in the photospheres of stars. The greater the effective temperature of the star and the greater of gravity, the greater the gradient of macroturbulence can be expected. The average value of the macroturbulent velocity increases for stars with higher temperatures, less graviy and faster rotation. In the stars analyzed, the average velocity of macroturbulence and microturbulence correlate with each other and with the rotation velocity. The relationship between the macroturbulence velocity and the rotational velocity varies from 1 to 1.7 from the hottest to the coldest solar-type stars. With the age of the star, the rotational velocity decreases more sharply than the velocity of macroturbulent motions. |
Keywords: Fourier method, iron abundance, line profiles, rotation, solar-type stars, velocity field |
1. Gadun A. S., Sheminova V. A. (1988). SPANSAT: Programma rascheta profiley spektral'nykh liniy pogloshcheniya v zvezdnykh atmosferakh v LTR-priblizhenii. — Kiev, 37.— (Preprint / AN USSR. In-t teoret. fiziki; ITF-88-87R).
2. Gurtovenko E. A., Ratnikova V. A. (1976). Issledovaniye mikroturbulentnosti po ekvivalentnym shirinam umerennykh i umerenno-sil'nykh liniy. Astrometriya i astrofizika. 30. 14—25.
3. Sheminova V. A. (1984). Opredeleniye mikro-makroturbulentnykh skorostey i utochneniye postoyannoy zatukhaniya po profilyam fraungoferovykh liniy. Astrometriya i astrofizika. 51. 42—45.
4. Sheminova V. A. (1984). Turbulentnost' v fotosfere solntsa kak zvezdy. III. Mikro-makroturbulentnost'. Solnech. dannyye. Byull. Glav. astron. obs. 8. 70—78.
5. Asplund M., Grevesse N., Sauval A. J. (2005). The solar chemical composition. ASP Conf. Ser. 336. 25—38.
6. Barklem P. S., Aspelund-Johansson J. (2005). The broadening of Fe II lines by neutral hydrogen collisions. Astron. and Astrophys. 435. 373—377.
https://doi.org/10.1051/0004-6361:20042469
7. Barklem P. S., Piskunov N., O’Mara B. J. (2000). A list of data for the broadening of metallic lines by neutral hydrogen collisions. Astron. and Astrophys. Suppl. 142. 467—473.
https://doi.org/10.1051/aas:2000167
8. Brewer J. M., Fischer D. A., Valenti J. A., Piskunov N. (2016). Spectral properties of cool stars: extended abundance analysis of 1,617 planet-search stars. Astrophys. J. 225. Id. 32. 36 p.
https://doi.org/10.3847/0067-0049/225/2/32
9. Bruntt H., Bedding T. R., Quirion P.-O., Lo Curto G., Carrier F., Smalley B., Dall T. H., Arentoft T., Bazot M., Butler R. P. (2010). Accurate fundamental parameters for 23 bright solar-type stars. Mon. Notic. Roy. Astron. Soc. 405. 1907—1923.
https://doi.org/10.1111/j.1365-2966.2010.16575.x
10. Doyle A. P., Davies G. R., Smalley B., Chaplin W. J., Elsworth Y. (2014). Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler. Mon. Notic. Roy. Astron. Soc. 444. 3592—3602.
https://doi.org/10.1093/mnras/stu1692
11. Fuhr J. R., Wiese W. L. (2006). A critical compilation of atomic transition probabilities for neutral and singly ionized iron. J. Phys. and Chem. Ref. Data. 35. 1669— 1809.
https://doi.org/10.1063/1.2218876
12. Gadun A. S., Kostyk R. I. (1990). Analysis of absorption line profiles in the spectra of the Sun and Procyon — velocity field and size of inhomogeneities. Sov. Astron. 34. N 3. 260—263.
13. Gonzalez G. (1998). Spectroscopic analyses of the parent stars of extrasolar planetary system candidates. Astron. and Astrophys. 334. 221—238.
14. Gray D. F. (1973). On the existence of classical microturbulence. Astrophys. J. 184. 461—472.
https://doi.org/10.1086/152344
15. Gray D. F. (1975). Atmospheric turbulence measured in stars above the main sequence. Astrophys. J. 202. 148—164.
https://doi.org/10.1086/153960
16. Gray D. F. (1977). A test of the micro-macroturbulence model on the solar flux spectrum. Astrophys. J. 218. 530—538.
https://doi.org/10.1086/155706
17. Gray D. F. (1978). Turbulence in stellar atmospheres. Solar Phys. 59. 193—236.
https://doi.org/10.1007/BF00951830
18. Gray D. F. (1982). Observations of spectral line asymmetries and convective velocities in F, G, and K stars. Astrophys. J. 255. 200—209.
https://doi.org/10.1086/159818
19. Gray D. F. (1982). The temperature dependence of rotation and turbulence in giant stars. Astrophys. J. 262. N 2. 682—699.
https://doi.org/10.1086/160461
20. Gray D. F. (1984). Measurements of rotation and turbulence in F, G, and K dwarfs stars. Astrophys. J. 281. 719—722.
https://doi.org/10.1086/162149
21. Gray D. F. (2005). The observation and analysis of stellar photospheres. 3rd Edition, by D. F. Gray. ISBN 0521851866, UK: Cambridge University Press. 484 p.
https://doi.org/10.1017/CBO9781316036570
22. Gray D. F. (2014). The stable K0 giant star beta Gem. Astrophys. J. 796. N 4. Id. 88. 11 p.
https://doi.org/10.1088/0004-637X/796/2/88
23. Gray D. F. (2017). A spectral-line analysis of the G8 III standard Vir. Astrophys. J. 845. Id. 62. 10 p.
https://doi.org/10.3847/1538-4357/aa7f77
24. Gray D. F. (2018). A Solar-flux line-broadening analysis. Astrophys. J. 857. Id. 139. 8 p.
https://doi.org/10.3847/1538-4357/aab8f2
25. Gurtovenko E. A., Sheminova V. A. (1986). ’Crossing’ method for studying the turbulence in solar and stellar atmospheres. I — Application to the Sun. Solar Phys. 106. 237—247.
https://doi.org/10.1007/BF00158494
26. Gurtovenko E. A., Sheminova V. A. (2015). Formation depths of Fraunhofer lines. arXiv:1505.00975. 35 p.
27. Gustafsson B., Edvardsson B., Eriksson K., Jorgensen U. G., Nordlund A., Plez B. (2008). A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. and Astrophys. 486. 951—970.
https://doi.org/10.1051/0004-6361:200809724
28. Hinkle K., Wallace L. (2005). The spectrum of Arcturus from the infrared through the ultraviolet. ASP Conference Ser.336.321 p. (Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, eds. T. G. Barnes, F. N. Bash).
29. Ivanyuk O. M., Jenkins J. S., Pavlenko Ya. V., Jones H. R. A., Pinfield D. J. (2017). The metal-rich abundance pattern — spectroscopic properties and abundances for 107 main-sequence stars. Mon. Notic. Roy. Astron. Soc. 468. 4151—4169.
https://doi.org/10.1093/mnras/stx647
30. Jenkins J. S., Jones H. R. A., Gozdziewski K. (2009). First results from the Calan-Hertfordshire Extrasolar Planet Search: exoplanets and the discovery of an eccentric brown dwarf in the desert. Mon. Notic. Roy. Astron. Soc. 398. 911—917.
https://doi.org/10.1111/j.1365-2966.2009.15097.x
31. Kostik R. I. (1982). Damping constant and turbulence in the solar atmosphere. Solar Phys. 78. 39—57.
https://doi.org/10.1007/BF00151141
32. Kupka F., Piskunov N., Ryabchikova T. A., Stempels H. C., Weiss W. W. (1999). VALD-2: Progress of the Vienna Atomic Line Data Base. Astron. and Astrophys. Suppl. 138. 119—133.
https://doi.org/10.1051/aas:1999267
33. Kurucz R. L. (1970). Atlas: a computer program for calculating model stellar atmospheres. SAO Special Report N309, Cambridge, 292 p.
34. Melendez J., Barbuy B. (2009). Both accurate and precise gf-values for Fe II lines. Astron. and Astrophys. 497. 611—617.
https://doi.org/10.1051/0004-6361/200811508
35. Neves V., Santos N. C., Sousa S. G., Correia A. C. M., Israelian G. (2009). Chemical abundances of 451 stars from the HARPS GTO planet search program. Thin disc, thick disc, and planets. Astron. and Astrophys. 497. 563—581.
https://doi.org/10.1051/0004-6361/200811328
36. Nissen P. E. (1981). Metal abundance and microturbulence in F0-G2 stars and the calibration of the Stromgren m1 index. Astron. and Astrophys. 97. 145—156.
37. Pavlenko Y. V., Kaminsky B. M., Jenkins J. S. Ivanyuk O. M., Jones H. R. A., Lyubchik Y. P. (2019). Masses, Oxygen and Carbon abundances in CHEPS dwarf stars. Astron. and Astrophys. 621. Id. A112. 13 p.
https://doi.org/10.1051/0004-6361/201834138
38. Saar S. H., Osten R. A. (1997). Rotation, turbulence and evidence for magnetic fields in southern dwarfs. Mon. Notic. Roy. Astron. Soc. 284. 803—810.
https://doi.org/10.1093/mnras/284.4.803
39. Scott P., Asplund M., Grevesse N., Bergemann M., Sauval A. J. (2015). The elemental composition of the Sun. II. The iron group elements Sc to Ni. Astron. and Astrophys. 537. Id. A26, 33 p.
https://doi.org/10.1051/0004-6361/201424110
40. Sheminova V. A. (2017). Fourier analysis of spectra of solar-type stars. Kinematics Phys. Celest. Bodies. 33. 217—230.
https://doi.org/10.3103/S0884591317050063
41. Sheminova V. A., Gadun A. S. (1998). Fourier analysis of Fe I lines in the spectra of the Sun, alpha Centauri A, Procyon, Arcturus, and Canopus. Kinematics Phys. Celest. Bodies. 14. N 3. 169—179.
42. Smith M. A. (1976). Applications of Fourier analysis to broadening of stellar line profiles. IV. A technique for separating macroturbulence from rotation in solar-type stars. Astrophys. J. 208. 487—499.
https://doi.org/10.1007/BF00154757
43. Smith M. A. (1978). An anticorrelation between macroturbulence and age in G stars near the main sequence. Astrophys. J. 224. 584—594.
https://doi.org/10.1086/156406
44. Smith M. (1979). A Rotational studies of lower main-sequence stars. Publ. Astron. Soc. Pacif. 91. 737—745.
https://doi.org/10.1086/130579
45. Sousa S. G., Santos N. C., Israelian G., Lovis C., Mayor M., Lo Curto G., Udry S. (2011). Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. Astron. and Astrophys. 533. Id. A141. 9 p.
https://doi.org/10.1051/0004-6361/201117699
46. Takeda Y. (1995). Analyses of line profiles in the solar flux spectrum for determining rotation and micro/macro turbulence. Publ. Astron. Soc. Jap. 47. 337—354.
47. Takeda Y., UeNo S. (2017). Does the radial-tangential macroturbulence model adequately describe the spectral line broadening of solar-type stars? Publ. Astron. Soc. Jap. 69. Id. 46. 25 p.
https://doi.org/10.1093/pasj/psx022
48. Valenti J. A., Fischer D. A. (2005). Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs. Astrophys. J. Suppl. 159. 141—166.
https://doi.org/10.1086/430500