Extremely high energy (E > 10.E20 eV) cosmic rays: potential sources

1Hnatyk, R, 2Voitsekhovskyi, V
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(3):47-68
https://doi.org/10.15407/kfnt2020.03.047
Start Page: Extragalactic Astronomy
Language: Ukrainian
Abstract: 

One of the unsolved problems of cosmic ray physics, is the establishment of the nature and sources of ultrahigh energy cosmic rays (UHECR, E > 1018 eV). The observed high degree of isotropy of the observed UHECR intensity, caused mainly by the deviations of the UHECR trajectories in extragalactic and Galactic magnetic fields, with the significant uncertainty in their chemical composition (atomic mass), don’t allow observed events to be linked to their sources and mechanisms for their acceleration established. It is possible to reduce the influence of magnetic deflection in two ways — by considering events with extremely high energy (EHECR, E > 1020 eV) and taking into account modern models of the Galactic magnetic field to correct its influence on the EHECR trajectory. In our work, the observed directions of arrival EHECR, according to the Auger and TA detectors, are adjusted for the influence of Galactic and random extragalactic magnetic fields. New celestial EHECR provisions are compared to samples of potential sources: 17 AGNs with powerful gamma radiation (from the 2FHL catalog) and 23 star-burst galaxies (radioflux-selected), as well as with selections of 42 radio galaxies from the parameterized catalog of radio galaxies and magnetars. Taking into account the energy loss lengths of the nuclear component (H, He, C, Si, Fe) EHECR in the extragalactic environment and the expected typical distances to potential sources (~ 100 Mpc for H and Si-Fe and ~50 Mpc for He, C), the astrophysical objects of the above samples that could be sources of relevant EHECR events are highlighted. The potential acceleration mechanisms in the selected objects are analyzed, and the contribution of possible Galactic sources to the observed EHECR flux is evaluated.

Keywords: active galactic nuclei, cosmic rays, magnetars, radiogalaxies
References: 

1. A. Aab, P. Abreu, M. Aglietta, et al. Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array, Astrophys. J. 794, 172 (2014).

2. A. Aab, P. Abreu, M. Aglietta, et al. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory, Astrophys. J. 804, 15 (2015).

3. A. Aab, P. Abreu, M. Aglietta, et al. The Pierre Auger Cosmic Ray Observatory, Nucl. Instrum. Methods Phys. Res., Sect. A 798, 172–213 (2015).

4. A. Aab, P. Abreu, M. Aglietta, et al. Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory (2017). arXiv 1710.07249

5. A. Aab, P. Abreu, M. Aglietta, et al. An indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources, Astrophys. J., Lett. 853, L29 (2018).
https://doi.org/10.3847/1538-4357/aaa129

6. R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al. Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 EeV in the northern sky measured with the surface detector of the Telescope Array experiment, Astrophys J., Lett. 790, L21 (2014).
https://doi.org/10.1088/0004-637X/790/1/21

7. T. Abu-Zayyad, R. Aida, M. Allen, et al. The surface detector array of the Telescope Array experiment, Nucl. Instrum. Methods Phys. Res., Sect. A 689, 87–97 (2012).

8. T. Abu-Zayyad, R. Aida, M. Allen, et al. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique, Astropart. Phys. 61, 93–101 (2015).

9. R. Aloisio, V. Berezinsky, P. Blasi, et al. A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays, Astropart. Phys. 27, 76–91 (2007).
https://doi.org/10.1016/j.astropartphys.2006.09.004

10. J. Arons. Magnetars in the metagalaxy: An origin for ultra high energy cosmic rays in the nearby Universe, Astrophys. J. 589, 871–892 (2003).
https://doi.org/10.1086/374776

11. V. Berezinsky. Extragalactic cosmic rays and their signatures, Astropart. Phys. 53, 120–129 (2014).
https://doi.org/10.1016/j.astropartphys.2013.04.001

12. D. R. Bergman. Combined fit of the spectrum and composition from Telescope Array, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 190.

13. P. L. Biermann, L. I. Caramete, F. Fraschetti, et al. The nature and origin of ultra-high energy cosmic ray particles (2016). arXiv 1610.00944

14. D. J. Bird, S. C. Corbato, H. Y. Dai, et al. Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation, Astrophys. J., Part 1 441, 144–150 (1995).
https://doi.org/10.1086/175344

15. L. Caccianiga. Anisotropies of the highest energy cosmic-ray events recorded by the Pierre Auger Observatory in 15 years of operation, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 206.

16. O. Deligny. The energy spectrum of ultra-high energy cosmic rays measured at the Pierre Auger Observatory and at the Telescope Array, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 234.

17. H. P. Dembinski, R. Engel, A. Fedynitch, et al. Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to 1011 GeV, in Proc. 35th Int. Cosmic Ray Conf. (ICRC 2017), Bexco, Busan, Korea, July 10–20,2017 (SISSA, Trieste, 2017), paper id. 533.
https://doi.org/10.22323/1.301.0533

18. A. di Matteo, T. Bister, J. Biteau, et al. Full-sky searches for anisotropies in UHECR arrival directions with the Pierre Auger Observatory and the Telescope Array, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 439.

19. R. Durrer and A. Neronov. Cosmological magnetic fields: Their generation, evolution and observation, Astron. Astrophys. Rev. 21, 62 (2013).
https://doi.org/10.1007/s00159-013-0062-7

20. K. Fang, K. Kotera, and A. V. Olinto. Newly-born pulsars as sources of ultrahigh energy cosmic rays, Astrophys. J. 750, 118 (2012).
https://doi.org/10.1088/0004-637X/750/2/118

21. G. R. Farrar and A. Gruzinov. Giant AGN flares and cosmic ray bursts, Astrophys. J. 693, 329–332 (2009).
https://doi.org/10.1088/0004-637X/693/1/329

22. G. R. Farrar and T. Piran. Tidal disruption jets as the source of ultra-high energy cosmic rays (2014). arXiv 1411.0704 [astro-ph.HE]

23. G. R. Farrar and M. S. Sutherland. Deflections of UHECRs in the Galactic magnetic field, J. Cosmol. Astropart. Phys., No. 5, 004 (2019).
https://doi.org/10.1088/1475-7516/2019/05/004

24. T. Fitoussi, G. Medina-Tanco, and J.-C. D’Olivo. Legacy from Fly’s Eye: Making sense of the highest energy cosmic ray ever observed, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 256.

25. M. Fukushima. Recent results from Telescope Array (2015). arXiv 1503.06961 [astro-ph.HE]
https://doi.org/10.1051/epjconf/20159904004

26. N. Globus, D. Allard, R. Mochkovitch, et al. UHECR acceleration at GRB internal shocks, Mon. Not. R. Astron. Soc. 451, 751–790 (2015).
https://doi.org/10.1093/mnras/stv893

27. C. Guépin and K. Kotera. Can we observe neutrino flares in coincidence with explosive transients?, Astron. Astrophys. 603, A76 (2017).
https://doi.org/10.1051/0004-6361/201630326

28. F. Halzen, R. A. Vázquez, T. Stanev, et al. The highest energy cosmic ray, Astropart. Phys. 3, 151–156 (1995).
https://doi.org/10.1016/0927-6505(94)00038-5

29. W. Hanlon. Telescope Array 10 year composition, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 280.

30. D. Hooper, S. Sarkar, and A. M. Taylor. The intergalactic propagation of ultra-high energy cosmic ray nuclei: An analytic approach, Phys. Rev. D 77, 103 007 (2008).
https://doi.org/10.1103/PhysRevD.77.103007

31. S. Horiuchi, K. Murase, K. Ioka, et al. The survival of nuclei in jets associated with core-collapse supernovae and gamma-ray bursts, Astrophys. J. 753, 69 (2012).
https://doi.org/10.1088/0004-637X/753/1/69

32. R. Jansson and G. R. Farrar. The Galactic Magnetic Field, Astrophys. J., Lett. 761, L11 (2012).
https://doi.org/10.1088/2041-8205/761/1/L11

33. R. Jansson and G. R. Farrar. A New Model of the Galactic Magnetic Field, Astrophys. J. 757, 14 (2012).
https://doi.org/10.1088/0004-637X/757/1/14

34. K. Jedamzik and A. Saveliev. Stringent limit on primordial magnetic fields from the cosmic microwave background radiation, Phys. Rev. Lett. 123, 021301 (2019).
https://doi.org/10.1103/PhysRevLett.123.021301

35. K. Kawata, A. di Matteo, T. Fujii, et al. TA Anisotropy Summary, EPJ Web Conf. 210, 01004 (2019).
https://doi.org/10.1051/epjconf/201921001004

36. K. Kotera, E. Amato, and P. Blasi. The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars, J. Cosmol. Astropart. Phys., No. 8, 026 (2015).
https://doi.org/10.1088/1475-7516/2015/08/026

37. K. Kotera and A. V. Olinto. The astrophysics of ultrahigh energy cosmic rays, Ann. Rev. Astron. Astrophys. 49, 119–153 (2011).
https://doi.org/10.1146/annurev-astro-081710-102620

38. D. Kuempel. Extragalactic propagation of ultra-high energy cosmic rays (2014). arXiv 1409.3129v2 [astro-ph.HE]

39. M. Lemoine and E. Waxman. Anisotropy vs chemical composition at ultra-high energies, J. Cosmol. Astropart. Phys., No. 11, 009 (2009).
https://doi.org/10.1088/1475-7516/2009/11/009

40. P. Mészáros. Ultra-high energy cosmic rays and neutrinos from gamma-ray bursts, hypernovae and galactic shocks, Nucl. Phys. B (Proc. Suppl.) 256, 241–251 (2014).
https://doi.org/10.1016/j.nuclphysbps.2014.10.028

41. M. S. Muzio, M. Unger, and G. R. Farrar. Progress towards characterizing ultrahigh energy cosmic ray sources, Phys. Rev. D 100, 103008 (2019).
https://doi.org/10.1103/PhysRevD.100.103008

42. M. Nagano and A. Watson. Observations and implications of the ultrahigh-energy cosmic rays, Rev. Mod. Phys. 72, 689–732 (2000).
https://doi.org/10.1103/RevModPhys.72.689

43. A. Neronov. Supernova origin of cosmic rays from a γ-ray signal in the constellation III region of the Large Magellanic Cloud, Phys. Rev. Lett. 119, 191102 (2017).
https://doi.org/10.1103/PhysRevLett.119.191102

44. C. A. Norman, D. B. Melrose, and A. Achterberg. The origin of cosmic rays above 1018.5 eV, Astrophys. J. 454, 60 (1995).
https://doi.org/10.1086/176465

45. S. A. Olausen and V. M. Kaspi. The McGill magnetar catalog, Astrophys. J., Suppl. Ser. 212, 6 (2014).
https://doi.org/10.1088/0067-0049/212/1/6

46. C. J. T. Peixoto. Estimating the depth of shower maximum using the surface detectors of the Pierre Auger Observatory, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 440.

47. J. P. Rachen and B. Eichmann. A parameterized catalog of radio galaxies as ultra-high energy cosmic ray sources, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 396.

48. H. Takami, K. Murase, and C. D. Dermer. Isotropy constraints on powerful sources of ultrahigh-energy cosmic rays at 1019 eV, Astrophys. J. 817, 59 (2016).
https://doi.org/10.3847/0004-637X/817/1/59

49. A. M. Taylor. The need for hard spectra sources of nearby heavy cosmic rays, EPJ Web Conf. 53, 06007 (2013).
https://doi.org/10.1051/epjconf/20135306007

50. A. M. Taylor, M. Ahlers, and F. A. Aharonian. Need for a local source of ultrahigh-energy cosmic-ray nuclei, Phys. Rev. D. 84, 105007 (2011).
https://doi.org/10.1103/PhysRevD.84.105007

51. R. B. Tully and J. R. Fisher, Nearby Galaxies Atlas (Cambridge Univ. Press., Cambridge, 1987).

52. R. B. Tully, D. Pomarède, R. Graziani, et al. Cosmicflows-3: Cosmography of the Local Void, Astrophys. J. 880, 24 (2019).
https://doi.org/10.3847/1538-4357/ab2597

53. A. Yushkov. Mass composition of cosmic rays with energies above 1017.2 eV from the hybrid data of the Pierre Auger Observatory, in Proc. 36th Int. Cosmic Ray Conf. (ICRC 2019), Madison, WI, July 24 – Aug. 1,2019 (SISSA, Trieste, 2019), paper id. 482.

54. B. T. Zhang, K. Murase, S. S. Kimura, et al. Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei, Phys. Rev. D 97, 083010 (2018).
https://doi.org/10.1103/PhysRevD.97.083010