Spectral study of active region site with Ellerman bomb and Нα-ejections. chromosphere. Ellerman bomb

Heading: 
1Pasechnik, MN
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(1):3-29
https://doi.org/10.15407/kfnt2021.01.003
Start Page: Solar Physics
Language: Ukrainian
Abstract: 

The results of the spectral observation analysis in the Нα line of a site of active region NOAA 11024, on which the Ellerman bomb and various types of chromospheric ejections developed , are presented.The spectral data with high spatial and temporal resolution were obtained with the French-Italian solar telescope THEMIS on July 4, 2009. The observation time was 20 minutes. 400 spectra with a time interval of ~ 3 seconds were obtained. On the day of the observations, the AR was at the stage of a sharp increase in activity. Stokes I profiles were obtained, with an interval corresponding to 160 km on the surface of the Sun. The Нα line profiles for different periods of the EB development were very diverse, generally they consisted of several components and were asymmetric with an excess of emission in the short-wavelength wing. The maximum increase in emission component intensity, in comparison with the profile for the AO area without active formations, in the short-wave by 73 % and in the long-wave by 35 % wings occurred at the distance of about ±0.16 nm from the line core. The temporal variations of intensity in the line wings indicate that during the development of the Ellerman bomb a gradual release of energy took place during the first 8 minutes, and then a pulse release of energy for 6 minutes. The period of the EB brightness increase consisted of 5 peaks with an interval of about 1 minute. The temporal changes in the line-of-sight velocities (Vlos) of chromospheric matterthe over the region of EB development at the level of the line core formation, which we obtained, indicate that the distribution of velocities in this region was mainly caused by the development of chromospheric ejections. It was found that Vlos in the area without active formations varied within ±2 km/s. Two periods of Vlos increase were distinguished, which consisted of several individual peaks — in the first half of the observations, the chromospheric matter mainly moved upward, and in the second half of the observations, the downward movement of matter prevailed. Нα-ejections of various types were observed over the area of EB development. The maximum velocity of upward movement in return ejections reached –12...–16 km/s and the chromospheric matter descended along the same trajectories of magnetic loops at a velocity twice as high — up to 22...30 km/s. In a loop ejection, the chromospheric matter moved both up and down simultaneously. The maximum Vlos of the upward movement at one side of the loop was –7 km/s, and the downward one at the other side of the loop reached 18 km/s. One of the ejections showed signs of plasma vortex motions, as evidenced by the inclined dark streaks in the spectra. The features of the change in the intensity of the Нα line wings and the line-of-sight velocities of the chromospheric matter indicate that the Ellerman bomb and its accompanying Нα-ejections, which emerged and developed in the active region site under investigation, were the result of magnetic reconnections caused by the emergence of a new serpentine magnetic flux and its interaction with a pre-existing magnetic field or between the magnetic loops of the flux itself.

Keywords: active region, Ellerman bomb, magnetic reconnections, Sun, Н<sub>&alpha;</sub>-ejections
References: 

1. Pikel’ner S. B. (1974) The nature of point-sources of lined, continuous and X-ray emission on the Sun. Astron. Zh. 51(2). 233–242.

2. Severnyi A. B. (1957) Investigating the fine structure of the emission of active formations and nonstationary processes on the Sun. Izv. Krym. Astrofiz. Obs. 17. 129—161.

3. Bello Gonzlez N., Danilovic S., Kneer F. (2013) On the structure and dynamics of Ellerman bombs. Detailed study of three events and modelling of H. Astron. and Astrophys. 557, id. A102. 16.
https://doi.org/10.1051/0004-6361/201321632

4. Berlicki A., Heinzel P. (2014) Observations and NLTE modeling of Ellerman bombs. Astron. and Astrophys. 567. 1—10.
https://doi.org/10.1051/0004-6361/201323244

5. Borovik A. V., Myachin D. Yu. (2002) The spotless flare of March 16, 1981. I. Preflare activations of the chromospheric fine structure. Solar Phys. 205(1). 105—116.
https://doi.org/10.1023/A:1013859722017

6. Chae J., Qiu J., Wang H., Goode P. R. (1999) Extreme-ultraviolet jets and H surges in solar microflares. Astrophys. J. 513(1). L75—L78.
https://doi.org/10.1086/311910

7. Ding M. D., Henoux J.-C., Fang C. (1998) Line profiles in moustaches produced by an impacting energetic particle beam. Astron. and Astrophys. 332. 761—766.

8. Dominguez S. V., L. van Driel-Gesztelyi, Bellot Rubio L. R. (2012) Granular-scale elementary flux emergence episodes in a solar active region. Solar Phys. 278(1). 99—120.
https://doi.org/10.1007/s11207-012-9968-x

9. Engell A. J., Siarkowski M., Gryciuk M., et al. (2011) Flares and their underlying magnetic complexity. Astrophys. J. 726. 12—20.
https://doi.org/10.1088/0004-637X/726/1/12

10. Fang C., Tang Y. H., Xu Z., et al. (2006) Spectral analysis of Ellerman bombs. Astrophys. J. 643. 1325—1336.
https://doi.org/10.1086/501342

11. Georgoulis M. K., Rust D. M., Bernasconi P. N., et al. (2002) Statistics, Morphology, and Energetics of Ellerman Bomb. Astrophys. J. 575. 506—528.
https://doi.org/10.1086/341195

12. Guglielmino S. L., Bellot Rubio L. R., Zuccarello F., et al. (2010) Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere. Astrophys. J. 724. 1083—1098.
https://doi.org/10.1088/0004-637X/724/2/1083

13. Hansteen V. H., Ortiz A., Archontis V., et al. (2019) Ellerman bombs and UV bursts: transient events in chromospheric current sheets. Astron. and Astrophys. 626. id.A33. 10.
https://doi.org/10.1051/0004-6361/201935376

14. Hashimoto Yu., Kitai R., Ichimoto K., et al. (2010) Internal fine structure of Ellerman bombs. Publ. Astron. Soc. Japan. 62. 879—891.
https://doi.org/10.1093/pasj/62.4.879

15. Herlender M., Berlicki A. (2010) Spectrophotometric analysis of an Ellerman bomb. Cent. Eur. Astrophys. Bull. 34. 65—72.

16. Herlender M., Berlicki A. (2011) Multi-wavelength analysis of Ellerman bomb light curves. Cent. Eur. Astrophys. Bull. 35. 181—186.

17. Huang Zhenghua, Mou Chaozhou, Fu Hui, et al. (2018) A magnetic reconnection event in the solar atmosphere driven by relaxation of a twisted arch filament system. Astrophys. J. Lett. 853(2). id. L26. 8.
https://doi.org/10.3847/2041-8213/aaa88c

18. Jess D. B., Mathioudakis M., Browning P. K ., et al. (2010) Microflare activity driven by forced magnetic reconnection. Astrophys. J. Lett. 712. L111—L115.
https://doi.org/10.1088/2041-8205/712/1/L111

19. Kitai R. (1983) On the mass motions and the atmospheric states of moustaches. Solar Phys. 87. 135—154.
https://doi.org/10.1007/BF00151165

20. Kondrashova N. N. (2016) Spectropolarimetric ivestigation of an Ellerman bomb: 1. Observations. Kinematics Phys. Celestial Bodies. 32(1). 13—22.
https://doi.org/10.3103/S0884591316010050

21. Kondrashova N. N., Pasechnik M. N., Chornogor S. N., et al. (2013) Atmosphere dynamics of the active region NOAA 11024. Solar Phys. 284(2). 499—513.
https://doi.org/10.1007/s11207-012-0212-5

22. Li Z., Fang C., Guo Y., et al. (2015) Diagnostics of Ellerman bombs with high-resolution spectral data. Res. Astron. and Astrophys. 15(9). id. 1513.
https://doi.org/10.1088/1674-4527/15/9/008

23. Madjarska M. S., Doyle J. G., de Pontieu B. (2009) Explosive events associated with a surge. Astrophys. J. 701. 253—259.
https://doi.org/10.1088/0004-637X/701/1/253

24. Matsumoto T., Kitai R., Shibata K., et al. (2008) Height dependence of gas flows in an Ellerman bomb. Publ. Astron. Soc. Jap. 60. 95—102.
https://doi.org/10.1093/pasj/60.1.95

25. Matsumoto T., Kitai R., Shibata K., et al. (2008) Cooperative observation of Ellerman bombs between the Solar Optical Telescope aboard Hinode and Hida/Domeless Solar Telescope. Publ. Astron. Soc. Jap. 60. 577—585.
https://doi.org/10.1093/pasj/60.3.577

26. Nelson C. J., Doyle J. G., Erdelyi R., et al. (2013) Statistical analysis of small Ellerman bomb events. Solar Phys. 283(2). 307—323.
https://doi.org/10.1007/s11207-012-0222-3

27. Nelson C. J., Scullion E. M., Doyle J. G., et al. (2015) Small-scale Structuring of Ellerman bombs at the Solar Limb. Astrophys. J. 798(1). 1—9.
https://doi.org/10.1088/0004-637X/798/1/19

28. Ortiz A., Hansteen V. H., Nobrega-Siverio D., et al. (2020) Ellerman bombs and UV bursts: reconnection at different atmospheric layers. Astron. and Astrophys. 633, id. A58. 19.
https://doi.org/10.1051/0004-6361/201936574

29. Pariat E., Aulanier G., Schmieder B., et al. ( 2004) Resistive emergence of undulatory flux tubes. Astrophys. J. 614. 1099—1112.
https://doi.org/10.1086/423891

30. Pariat E., Schmieder B., Berlicki A., et al. (2007) Spectrophotometric analysis of Ellerman bombs in the Ca II, H, and UV range. Astron. and Astrophys. 473. 279—289.
https://doi.org/10.1051/0004-6361:20067011

31. Pasechnik M. N. (2014) Plasma motions in the solar loop of emerging magnetic flux. Kinematics Phys. Celestial Bodies. 30(4). 161—172.
https://doi.org/10.3103/S0884591314040047

32. Pasechnik M. N. (2016) Spectral study of a pair of Ellerman bombs. Kinematics Phys. Celestial Bodies. 32(3). 55—69.
https://doi.org/10.3103/S0884591316020057

33. Pasechnik M. N. (2018) Spectral Study of Ellerman Bombs. Photosphere. Kinematics Phys. Celestial Bodies. 34(2). 68—81.
https://doi.org/10.3103/S0884591318020071

34. Pasechnik M. N. (2019) Motion of photospheric matter within the active region site with two Ellerman Bombs. Kinematics Phys. Celestial Bodies. 35(2). 55—69.
https://doi.org/10.3103/S0884591319020053

35. Qiu J., Ding M. D., Wang H., et al. (2000) Ultraviolet and H emission in Ellerman Bombs. Astrophys. J. 544. L157—L161.
https://doi.org/10.1086/317310

36. Reid A., Mathioudakis M., Scullion E., et al. (2015) Ellerman bombs with jets: cause and effect. Astrophys. J. 805(1). id. 64. 9.
https://doi.org/10.1088/0004-637X/805/1/64

37. Socas-Navarro H., Martnez Pillet V., Elmore D., et al. (2006) Spectro-polarimetric observations and non-LTE modeling of Ellerman bombs. Solar Phys. 235(1-2). 75—86.
https://doi.org/10.1007/s11207-006-0049-x

38. Valori G., Green L. M., Demouli P., et al. (2012) Nonlinear force-free extrapolation of emerging flux with a global twist and serpantine fine structures. Solar Phys. 278(1). 73—97.
https://doi.org/10.1007/s11207-011-9865-8

39. Vissers Gregal J. M., Rouppe van der Voort, Luc H. M., et al. (2013) Ellerman bombs at high resolution. II. Triggering, visibility, and effect on upper atmosphere. Astrophys. J. 774. 1—14.
https://doi.org/10.1088/0004-637X/774/1/32

40. Watanabe H., Kitai R., Okamoto K., et al. (2008) Spectropolarimetric observation of an emerging flux region: triggering mechanisms of Ellerman bombs. Astrophys. J. 684. 736—746.
https://doi.org/10.1086/590234

41. Watanabe H., Vissers G., Kitai R., et al. (2011) Ellerman bombs at high resolution: 1. Morphological evidence for photospheric reconnection. Astrophys. J. 736(1). 71—83.
https://doi.org/10.1088/0004-637X/736/1/71

42. Yang H., Chae J., Lim E.-K., et al. (2013) Velocities and temperatures of an Ellerman bomb and its associated features. Solar Phys. 288(1). 39—53.
https://doi.org/10.1007/s11207-013-0354-0

43. Young P. R., Tian H., Peter H., et al. (2018) Solar ultraviolet bursts. Space Sci. Revs. 214(8). id. 120. 39.
https://doi.org/10.1007/s11214-018-0551-0

44. Zachariadis Th. G., Alissandrakis C. E., Banos G. (1987) Observations of Ellerman bombs in H. Solar Phys. 108(2). 227—236.
https://doi.org/10.1007/BF00214163

45. Zirin H. (1966) The solar atmosphere, Blaisdell Publ. Co., Massachusetts, U.S.A.