Effects of viscosity and oblateness on the perturbed Robe’s problem with non-spherical primaries

Kaur, B, Kumar, S, Aggarwal, R
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(5):31-50
https://doi.org/10.15407/kfnt2022.05.031
Start Page: Dynamics and Physics of Solar System Bodies
Язык: Ukrainian
Аннотация: 

We here analyzed the effects of viscosity, oblateness of the primary m1, length parameter l, and perturbations in the Coriolis and centrifugal forces on the stability of the equilibrium points of the Robe’s problem. In the setting, it is assumed that the two primaries m1, an oblate spheroid of incompressible homogeneous viscous fluid of density ρ1 and m2, a finite straight segment of length 2l revolve around their common center of mass in circular orbits while third body m3 (a small solid sphere of density ρ3) moves inside m1. Two collinear {L1, L2} and infinite non-collinear equilibrium points are evaluated and found that the location of equilibrium points remain unaffected by viscosity. However, the effects of oblateness and perturbation in the centrifugal force are quite noticeable from the expressions of the equilibrium points. The stability criterion for L1 and are stated whereas the non-collinear equilibrium points are found to be unstable. It is observed that the viscosity has a substantial effect on the stability as it changes the nature of stability from marginal stability to asymptotic stability. The perturbations do not affect the stability of L1 but affect the stability of L2. Moreover, the effect of oblateness on the stability of the equilibrium points is quite evident. A very important observation of the study is that the oblateness parameter A neutralizes the effects of the length parameter l and perturbation ε2, on the stability of equilibrium point L1. The results obtained are applied on Earth-Moon, Jupiter-Amalthea, Jupiter-Ganymede systems (astrophysical problems) to predict the stability of L1.

Ключевые слова: coriolis and centrifugal forces, finite straight segment, oblate spheroid, Robe’s restricted three-body problem, Viscosity

Full text (PDF)

References: 

1. Abdul Razaq Abdul Raheem (2011). Stability of collinear points in the generalized photogravitational Robes restricted three-body problem. Int. J. Astron. and Astro¬phys. 1. 6-9. doi:10.4236/ijaa.2011.11002
https://doi.org/10.4236/ijaa.2011.11002

2. Abouelmagd E. I., Ansari A. A., Shehata M. H. (2021). On Robe's restricted problem with a modified Newtonian potential. Int. J. Geometr. Methods in Modern Phys. 18(01), 2150005
https://doi.org/10.1142/S0219887821500055

3. Aggarwal R., Kaur B. (2014). Robe's restricted problem of 2 + 2 bodies with one of the primaries an oblate body. Astrophys. Space Sci. 352. 467-479.
https://doi.org/10.1007/s10509-014-1963-2

4. Aggarwal R., Kaur B., Yadav S. (2018). Robe's Restricted Problem of 2 + 2 bodies with a Roche ellipsoid-triaxial system. J. Astronaut. Sci. 65(1), 63-81.
https://doi.org/10.1007/s40295-017-0119-3

5. Ansari A. A., Singh J., Alhussain Z. A., Belmabrouk H. (2019). Effect of oblateness and viscous force in the Robe's circular restricted three-body problem. New Astron. 73. 101280.
https://doi.org/10.1016/j.newast.2019.101280

6. Ansari A. A., Singh J., Alhussain Z. A., Belmabrouk H. (2019). Perturbed Robe's CR3BP with viscous force. Astrophys. Space Sci. 364. 95.
https://doi.org/10.1007/s10509-019-3586-0

7. Chandrashekhar S. (1987). Ellipsoidal figures of equilibrium. New York: Dover Publications Inc.

8. Clark R. N. (1996). Control system dynamics. New York: Cambridge University Press.
https://doi.org/10.1017/CBO9781139163873

9. Ghosh R. N., Mishra B. N. (2001). Generalised photogravitational restricted three-body problem and the locations and stability of collinear equilibrium points. Ind. J. Pure Appl. Math., 32(14). 515-520.

10. Giordano C. M., Plastino A. R., Plastino A. (1996). Robe's restricted three-body problem with drag. Celes. Mech. and Dyn. Astron. 66. 229-242.
https://doi.org/10.1007/BF00054966

11. Hallan P. P., Mangang K. B. (2007). Existence and linear stability of equilibrium points in the Robe's restricted three body problem when the first primary is an oblate spheroid. Planet. and Space Sci. 55. 512-516.
https://doi.org/10.1016/j.pss.2006.10.002

12. Hallan P. P., Mangang K. B. (2007). Non linear stability of equilibrium point in the Robe's restricted circular three-body problem, Ind. J. Pure. Appl. Math. 38(1), 17-30.
https://doi.org/10.1155/2008/425412

13. Hallan P. P., Mangang K. B. (2008). Effect of perturbations in Coriolis and centrifugal forces on the non linear stability of equilibrium point in the Robe's restricted circular three-body problem. Adv. in Astron. 2008, Article ID 425412. 21.
https://doi.org/10.1155/2008/425412

14. Hallan P. P., Rana N. (2001). The existence and stability of equilibrium points in the Robe's restricted three-body problem. Celes. Mech. Dyn. Astron. 79(2). 145-155.

15. Hallan P. P., Rana N. (2003). Effect of perturbations in the Coriolis and centrifugal forces on the locations and stability of the equilibrium points in Robe's circular problem with density parameter having arbitrary value. Ind. J. Appl. Math. 34(7). 1045- 1059.

16. Jain R., Sinha D. (2014). Stability and regions of motion in the restricted three-body problem when both the primaries are finite straight segments. Astrophys. Space Sci. 351. 87-100.
https://doi.org/10.1007/s10509-013-1698-5

17. Kaur B., Aggarwal R. (2012). Robe's Problem: Its extension to 2 + 2 bodies. Astrophys. Space Sci. 339. 283-294.
https://doi.org/10.1007/s10509-012-0991-z

18. Kaur B., Aggarwal R. (2013). Robe's restricted problem of 2 + 2 bodies when the bigger primary is a Roche ellipsoid. Acta Astronaut. 89. 31-37.
https://doi.org/10.1016/j.actaastro.2013.03.022

19. Kaur B., Aggarwal R. (2013). Robe's restricted problem of 2 + 2 bodies when the bigger primary is a Roche ellipsoid and the smaller primary is an oblate body. Astrophys. Space Sci. 349. 57-69.
https://doi.org/10.1007/s10509-013-1607-y

20. Kaur B., Chauhan S., Kumar D. (2021). Outecomes of aspheric primaries in Robe's circular restricted three-body problem. Appl. and Appl. Math.: Int. J. (AAM). 16(1). 463-480.

21. Kaur B., Chauhan S., Kumar D. (2021). On sensitivity of the stability of equilibrium points with respect to the perturbations. J. Astrophys. and Astron. 42. 4.
https://doi.org/10.1007/s12036-020-09650-x

22. Kaur B., Kumar D., Chauhan S. (2020). Effect of perturbations in the Coriolis and centrifugal forces in the Robe-finite straight segment model with arbitrary density parameter. Astron. Nachr. 341, 32-43.
https://doi.org/10.1002/asna.201913645

23. Kaur B., Kumar S. (2021). Stability analysis in the perturbed CRR3BP finite straight segment model under the effect of viscosity. Astrophys. Space Sci. 366, 43.
https://doi.org/10.1007/s10509-021-03948-0

24. Kaur B., Kumar S., Chauhan S., Kumar D. (2020). Stability analysis of circular Robe's R3BP with finite straight segment and viscosity. Appl. and Appl. Math. Int. J. (AAM). 15(2). 1072-1090.

25. Kumar D., Kaur B., Chauhan S., Kumar V. (2019). Robe's restricted three-body problem when one of the primaries is a finite straight segment. Int. J. Non-Linear Mech. 109. 182-188.
https://doi.org/10.1016/j.ijnonlinmec.2018.11.004

26. MuCuskey S. W. (1963). Introduction to celestial mechanics. New York: Addison- Wesely Publishing Company, Inc.

27. Plastino A. R., Plastino A. (1995). Robe's restricted three-body problem revisited. Celes. Mech. Dyn. Astron. 61. 197-206.
https://doi.org/10.1007/BF00048515

28. Robe H. A. G. (1977). A new kind of three-body problem. Celes. Mech. Dyn. Astron. 16. 343-351.
https://doi.org/10.1007/BF01232659

29. Schmidt D., Valeriano L. (2016). Non linear stability of stationary points in the problem of Robe. Discrete Contin. Dyn. Syst. Ser. B. 21(6). 1917-1936.
https://doi.org/10.3934/dcdsb.2016029

30. Shrivastava A. K., Garain D. (1991). Effect of perturbation on the location of libration point in the Robe's restricted problem of three bodies. Celes. Mech. Dyn. Astron. 51. 67-73.
https://doi.org/10.1007/BF02426670

31. Singh J., Leke O. (2013). Existence and stability of equilibrium points in the Robe's restricted three-body problem with variable masses. Int. J. Astron. and Astrophys. 3. 113-122.
https://doi.org/10.4236/ijaa.2013.32013

32. Singh J., Leke O. (2013). On Robe's circular restricted problem of three variable mass bodies, J. Astrophys. 2013, Article ID 898794. 11.
https://doi.org/10.1155/2013/898794

33. Singh J., Leke O. (2013). Robe's restricted three-body problem with variable masses and perturbing forces. ISRN Astron. and Astrophys. 8.
https://doi.org/10.1155/2013/910354

34. Singh J., Mohammed H. L. (2012). Robe's circular restricted three-body problem under oblate and triaxial primaries. Earth, Moon, and Planets. 109. 1-11.
https://doi.org/10.1007/s11038-012-9397-8

35. Singh J., Mohammed H. L. (2013). Out-of-plane equilibrium points and their stability in the Robe's problem with oblateness and triaxiality. Astrophys. Space Sci. 345. 265-271.
https://doi.org/10.1007/s10509-013-1414-5

36. Singh J., Sandah A. U. (2012). Existence and linear stability of equilibrium points in the Robe's restricted three-body problem with oblateness. Adv. Math. Phys. 18.
https://doi.org/10.1155/2012/679063