Geospace perturbations that accompanied rocket launches from the Baikonur cosmodrome

Рубрика: 
Luo, Y, 1Chernogor, LF, Zhdanko, YH
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(6):3-24
https://doi.org/10.15407/kfnt2022.06.003
Язык: Ukrainian
Аннотация: 

The rocket engine burns release energy comparable to that, which is characteristic of the many natural processes. The energy released by large rockets attains 10—100 TJ, and the engine power 0.1—1 TW. The energy released per unit volume is much higher than the specific energy content and energy release of all natural processes. Disturbances arise in the underlying surface, the atmosphere, the ionosphere, and even in the magnetosphere in the course of the rocket booster stages burns and the orbital maneuvering subsystem engine firings. Effects from rocket engine burns have been studied for a period longer than 60 years, and the results have been published in hundreds of scientific papers, reference books, and monographs. As it turns out, the effects produced exhibit diverse geophysical phenomena. The effects near the rocket trajectory, namely, the area of electron number density depressed (ionospheric hole), as well as the generation of infrasound and atmospheric gravity waves (density waves) have been studied best. The study of the geomagnetic effect has played a prominent role. The Doppler, Faraday, ionosonde, magnetometer, incoherent scatter, etc., techniques has been used in the study. The effects accompanying the rocket booster stages burns and the orbital maneuvering subsystem engine firings are still under study. Large-scale (~ 1—10 Mm) perturbations arising from rocket engine burns have been studied for many years. Their study has contributed enormously to understand better the mechanisms for transporting perturbations from rockets to global-scale distances, the subsystem coupling in the Earth — atmosphere — ionosphere — magnetosphere system, and ecological consequences of rocket engine burns. Perturbations arising in the atmosphere and geospace significantly depend on the state of atmospheric-space weather, local time, season, and solar cycle. The perturbations arising in the system mentioned above even during the launches of two identical rockets can significantly differ. In addition, the rockets are differing in power, trajectories, kind of fuel, and the cosmodrome location. Therefore, the study of the subsystems response to the rocket booster stages burns and the orbital maneuvering subsystem engine firings remain pressing scientific and technical issues. The purpose of the present work is to analyze the ionospheric effects from the Soyuz and Proton rockets launched from the Baikonur cosmodrome during solar cycle 24. The ionospheric effects caused by the Soyuz and Proton rockets launches from the Baikonur cosmodrome were observed by the vertical incidence HF Doppler radar. Generally, the measurements are taken at two fixed frequencies, 3.2 and 4.2 MHz. The smaller frequency is effective in studying dynamic processes acting in the E and F1 layers, and the greater frequency is effective in conducting observations of the F1 and F2 layers. The parameters of ionospheric perturbations observed after 81 Soyuz rocket launches and 53 Proton rocket launches from the Baikonur cosmodrome in 2009—2021 have been analyzed. A few groups of time delays have been confirmed to exist between the rocket launch and the supposed ionospheric response to the rocket launch. The magnitudes of these time delays varied from ~ 10 to ~ 300 min. The groups of the time delays correspond to a few groups of the apparent horizontal speeds of disturbance propagation (100—200 m/s; 390 ± 23 m/s; 0.97 ± 0.10 km/s; 1.28 ± 0.13 km/s; 1.68 ± 0.13 km/s; 2.07 ± 0.13 km/s, as well as ~ 8 km/s). The slow atmospheric gravity waves, atmospheric gravity waves of man-made origin, density shock waves, slow and ordinary MHD waves have such speeds. As a rule, the resulting perturbations, except for shock waves, exhibited a quasiperiodicity at ~ 5 to ~ 20-min period, and the Doppler shift amplitude was observed to be 0.1—0.3 Hz. The quasi-periodic variations in the electron density were observed to usually have a relative amplitude of ~ 1—10%, and sometimes to attain ~ 20 %.

Ключевые слова: apparent speed, Doppler radio sounding, Doppler shift, Doppler spectra, ionospheric effects, quasiperiodic disturbance, rocket launches, solar cycle 24, statistical analysis, time delay

Повний текст (PDF)

References: 

1. Akimov V. F., Kalinin Yu. K., Platonov T. D., Tulinova G. G., Shustov E. I. (2000) The effect of ballistic missile trail development in the midlatitude ionosphere. Geomagn. Aeron. 40(4). 537-540.

2. Afraimovich E. L., Perevalova N. P. (2006) GPS-monitoring of the Earth's upper atmosphere. Irkutsk, Russia: SI SC RRS ESSC SB RAMS Publ. [in Russian].

3. Burmaka V. P., Kostrov L. S., Chernogor L. F. (2003) Statistics of signals of HF Doppler radar probing the bottomside ionosphere disturbed by rocket launches and solar terminator. Radio Phys. Radio Astron. 8(2). 143-162 [in Russian].
https://doi.org/10.1615/TelecomRadEng.v61.i2.70

4. Burmaka V. P., Lysenko V. N., Chernogor L. F., Chernyak Yu. V. (2006) Wave-like processes in the ionospheric F region that accompanied rocket launches from the Baikonur site. Geomagn. Aeron. 46(6). 742-759.
https://doi.org/10.1134/S0016793206060107

5. Burmaka V. P., Taran V. I., Chernogor L. F. (2003) Results of combined radio physical observations of wave disturbances in geospace which accompanied space vehicle launches and flights. Kosm. nauka tehnol. SUPPLEMENT. [Space science and technology]. 9(2). 57-61 [in Russian].
https://doi.org/10.15407/knit2003.02s.057

6. Burmaka V. P., Taran V. I., Chernogor L. F. (2004) Ionospheric wave disturbances accompanied by rocket launches against a background of natural transient processes. Geomagn. Aeron. 44(4). 476-491.

7. Burmaka V. P., Taran V. I., Chernogor L. F. (2004) Clustered-instrument studies of ionospheric wave disturbances accompanying rocket launches against the background of nonstationaty natural processes. Radio Phys. Radio Astron. 9(1). 5-28 [in Russian].

8. Burmaka V. P., Taran V. I., Chernogor L. F. (2004) Radar observations of wave-like disturbances in ionosphere, associated with space vehicle flights. Kosm. nauka tehnol. [Space science and technology]. 10(5-6). 113-117 [in Russian].
https://doi.org/10.15407/knit2004.05.113

9. Burmaka V. P., Taran V. I., Chernogor L. F. (2006) Wave-like processes in the ionosphere under quiet and disturbed conditions. 2. Analysis of observations and simulation. Geomagn. Aeron. 46(2). 199-208.
https://doi.org/10.1134/S0016793206020083

10. Burmaka V. P., Chernogor L. F. (2009) Complex Diagnostics of Ionospheric Plasma Disturbed by Far Rocket Launches. Radio Phys. Radio Astron. 14(1). 26-44 [in Russian].

11. Burmaka V. P., Chernogor L. F. (2009) Complex diagnostics of disturbances in the ionospheric plasma parameters far from the trajectories of launched rockets. Geomagn. Aeron. 49(5). 637-652.
https://doi.org/10.1134/S0016793209050119

12. Burmaka V. P., Chernogor L. F., Chernyak Yu. V. (2005) Geospace wave disturbances accompanying "Soyuz" and "Proton" launches and flights. Radio Phys. Radio Astron. 10(3). 254-272 [in Russian].

13. Rocket's environmental impact. (2016) Adushkin V. V., Kozlov S. I., Sil'nikov M. V., eds. Moscow: GEOS. 795 [in Russian].

14. Germash K. P., Kostrov L. S., Rozumenko V. T., Tyrnov O. F., Tsymbal A. M., Chernogor L. F. (1999) Global ionospheric disturbances caused by a rocket launch against a background of a magnetic storm. Geomagn. Aeron. 39(1). 72-78 [in Russian].

15. Germash K. P., Leus S. G., Chernogor L. F., Shamota M. A. (2009) Geomagnetic pulsations associated with rocket launches from different cosmodromes of the world. Kosm. nauka tehnol. [Space science and technology]. 15(1). 31-43 [in Russian].
https://doi.org/10.15407/knit2009.01.031

16. Gorelyj S. I., Lampej V. K., Nikol'skij A. V. (1994) Ionospheric effects of spacecraft launches. Geomagn. Aeron. 34(3). 158-161 [in Russian].

17. Gossard E. E., Hook W. H. (1975) Waves in the Atmosphere. Amsterdam: Elsevier. 532.

18. Zhivolup T. G., Chernogor L. F. (2010) Ionospheric effects during rocket «Proton» flight: results of vertical sounding. Kosm. nauka tehnol. [Space science and technology]. 16(3). 25-31 [in Russian].
https://doi.org/10.15407/knit2010.03.015

19. Zhivolup T. G., Chernogor L. F. (2010) Ionospheric effects during flights of the rocket «Soyuz» under magnetically quiet and magnetically disturbed conditions. Kosm. nauka tehnol. [Space science and technology]. 16(3). 32-41 [in Russian].
https://doi.org/10.15407/knit2010.03.022

20. Zhivolup T. G., Chernogor L. F. (2011) Comparative analysis of the disturbances in the ionosphere, caused by rocket launches «Proton» and «Soyuz». The Bulletin of NTU «KhPI». Proceeding. Thematic issue «Radio Physics and Ionosphere». (44). 18-26 [in Russian].

21. Karlov V. D., Kozlov S. I., Tkachev G. N. (1980) Large-scale disturbances of the ionosphere occurring during the flight of a rocket with a working engine. Cosmic Research. 18(2). 266-277. [in Russian].

22. Kostrov L. S., Rozumenko V. T., Chernogor L. F. (1999) Doppler radar measurements of the disturbances in the bottomside ionosphere, associated with space vehicle launches and maneuvering system burns. Radio Phys. Radio Astron. 4(3). 227-246 [in Russian].

23. Kostrov L. S., Rozumenko V. T., Chernogor L. F. (2002) Doppler radio sounding of disturbances in the E and F regions of the ionosphere during launches and flights of spacecraft. Kosm. nauka tehnol. SUPPLEMENT. [Space science and technology]. 8(2). 132-143 [in Russian].
https://doi.org/10.15407/knit2002.02s.132

24. Kostrov L. S., Rozumenko V. T., Chernogor L. F. (2003) Results of combined radio physical observations of wave disturbances in geospace which accompanied space vehicle launches and flights. Kosm. nauka tehnol. SUPPLEMENT. [Space science and technology]. 9(2). 76-81 [in Russian].
https://doi.org/10.15407/knit2003.02s.057

25. Nagorskii P. M. (1998) Rocket-produced irregularities in the ionospheric F-region. Geomagn. Aeron. 38(2). 100-106 [in Russian].

26. Nagorskii P. M. (1999) Analysis of the response of an HF radio signal to ionospheric plasma disturbances caused by acoustic shock waves. Radiophysics and Quantum Electronics. 42(1). 31-38.
https://doi.org/10.1007/BF02677638

27. Nagorskii P. M., Tarashchuk Yu. E. (1993) Artificial Modification of the Ionosphere during Rocket Launches Injecting Spacecraft into Orbit. Izv. Vyssh. Uchebn. Zaved., Fiz. 36(10). 98-107 [in Russian].
https://doi.org/10.1007/BF00559162

28. Nagorskii P. M., Tscibikov B. B. (1998) Large-scale unintended wave-like distur¬bances of the ionosphere. In the coll. Physical problems of ecology. M.: Moscow State University Publ. (l). 49-53 [in Russian].

29. Sorokin V. M., Fedorovich G. V. (1982) The physics of slow MHD waves in the ionospheric plasma. Moscow: Energoatomizdat. 135 [in Russian].

30. Chernogor L. F. (2009) Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. 386 [in Russian].

31. Chernogor L. F. (2009) Geomagnetic field fluctuations near Kharkov, which accompanied rocket launches from the Baikonur site. Geomagn. Aeron. 49(3). 384-396.
https://doi.org/10.1134/S001679320903013X

32. Chernogor L. F. (2010) Quasiperiodic oscillations of the geomagnetic field near the City of Kharkov, which accompanied the launches of rockets from the Plesetsk cosmodrome. Nonlinear World. (12). 748-757 [in Russian].

33. Chernogor L. F. (2013) Geomagnetic effect of launches and flights of large spacecraft. Cosmic Research. 51(6). 413-426.
https://doi.org/10.1134/S0010952513050031

34. Chernogor L. F., Garmash K. P., Podnos V. A., Tyrnov O. F. (2013) The V. N. Karazin Kharkiv National University Radio Physical Observatory - the tool for ionosphere monitoring in space experiments. Space Project «Ionosat-Micro». Kyiv, Ukraine: Academperiodika Publ. 160-182.

35. Chernogor L. F., Zhivolup T. G. (2011) Comparative analysis of ionospheric effects during "Proton" rocket flights under different states of space weather. Radio Phys. Radio Astron. 16(4). 394-403 [in Russian].

36. The environmental problems and the risks of rocket-space technology impact on the natural environment: Handbook. (2000) Adushkin V. V., Kozlov S. I., Petrov, A. V., eds. Moscow: Ankil Publ. 640 [in Russian].

37. Bernhardt P. A., Ballenthin J. O., Baumgardner J. L., Bhatt A., Boyd I. D., Burt J. M., Caton R. G., Coster A., Erickson P. J., Huba J. D., Earle G. D., Kaplan C. R., Foster J. C., Groves K. M., Haaser R. A., Heelis R. A., Hunton D. E., Hysell D. L., Klenzing J. H., Larsen M. F., Lind F. D., Pedersen T. R., Pfaff R. F., Stoneback R. A., Roddy P. A., Rodriquez S. P., San Antonio G. S., Schuck P. W., Siefring C. L., Selcher C. A., Smith S. M., Talaat E. R., Thomason J. F., Tsunoda R. T., Varney R. H. (2012) Ground and space-based measurement of rocket engine burns in the ionosphere. IEEE Transactions on Plasma Sciences. 40(5). 1267-1286.
https://doi.org/10.1109/TPS.2012.2185814

38. Bernhardt P. A., Kashiwa B. A., Tepley C. A., Noble S. T. (1988) Spacelab 2 upper atmospheric modification experiment over Arecibo. I - Neutral gas dynamics. Astrophys. Lett. Comm. 27. 169-181.

39. Bernhardt P. A., Swartz W., Kelly M., Sulzer M., Noble S. T. (1988) Spacelab 2 upper atmospheric modification experiment over Arecibo. II - Plasma dynamics. Astrophys. Lett. Comm. 27(3). 183-198.

40. Booker H. G. (1961) A local reduction of F region ionization due to missile transit. J. Geophys. Res. 66(4). 1073-1079.
https://doi.org/10.1029/JZ066i004p01073

41. Bowden G. W., Lorrain P., Brown M. (2020) Numerical simulation of ionospheric depletions resulting from rocket launches using a general circulation model. J. Geophys. Res.: Space Physics. 125(6). id. e2020JA027836.
https://doi.org/10.1029/2020JA027836

42. Chernogor L. F., Blaunstein N. (2013) Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, N. Y.: CRC Press. Taylor & Francis Group.

43. Chernogor L. F., Garmash K. P., Kostrov L. S., Rozumenko V. T., Tyrnov O. F., Tsymbal A. M. (1998) Perturbations in the ionosphere following U.S. powerful space vehicle launching. Radio Phys. Radio Astron. 3(2). 181-190.

44. Chou M.-Y., Lin C. C. H., Shen M.-H., Yue J., Huba J. D., Chen C.-H. (2018) Ionospheric disturbances triggered by SpaceX Falcon heavy. Geophys. Res. Lett. 45(13). 6334-6342.
https://doi.org/10.1029/2018GL078088

45. Chou M.-Y., Shen M.-H., Lin C. C. H., Yue J., Chen C.-H., Liu J.-Y., Lin J.-T. (2018) Gigantic circular shock acoustic waves in the ionosphere triggered by the launch of FORMOSAT-5 satellite. Space Weather. 16(2). 172-184.
https://doi.org/10.1002/2017SW001738

46. Ding F., Wan W., Mao T., Wang M., Ning B., Zhao B., Xiong B. (2014) Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. 41(10). 3351-3358.
https://doi.org/10.1002/2014GL060107

47. Gritchin A. I., Dorohov V. L., Kapanin I. I., Karpachov A. I., Kostrov L. S., Leus S. G., Martynenko S. I., Mashtaler N. N., Milovanov Yu. B., Misyura V. A., Pakhomova O. V., Podnos V. A., Pokhilko S. N., Protopop E. N., Rozumenko V. T., Somov V. G., Tyrnov O. F., Fedorenko V. N., Fedorenko Yu. P., Tsymbal A. M., Chernogor L. F., Chulakov S. G., Shemet A. S. (1995) Complex radiophysical investigations of ionospheric disturbances caused by launches and flights of space¬craft. Space plasma physics. Kyiv: SSAU. 161-170.

48. Jackson J. E., Whale H. A., Bauer S. J. (1962) Local ionospheric disturbance created by a burning rocket. J. Geophys. Res. 67(5). 2059-2061.
https://doi.org/10.1029/JZ067i005p02059

49. Kakinami Y., Yamamoto M., Chen C.-H., Watanabe S., Lin C., Liu J.-Y., Habu H. (2013) Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys. 118(8). 5184-5189.
https://doi.org/10.1002/jgra.50508

50. Li G., Ning B., Abdu M. A., Wang C., Otsuka Y., Wan W., Lei J., Nishioka M., Tsugawa T., Hu L., Yang G., Yan C. (2018) Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Progr. Earth and Planet. Sci. 5(1). id. 11.
https://doi.org/10.1186/s40645-018-0172-y

51. Lin C. H., Lin J. T., Chen C. H., Liu J. Y., Sun Y. Y., Kakinami Y., Matsumura M., Chen W. H., Liu H., Rau R. J. (2014) Ionospheric shock waves triggered by rockets. Ann. Geophys. 32(9). 1145-1152.
https://doi.org/10.5194/angeo-32-1145-2014

52. Lin C. C. H., Shen M.-H., Chou M.-Y., Chen C.-H., Yue J., Chen P.-C., Matsumura M. (2017) Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 44(15). 7578-7586.
https://doi.org/10.1002/2017GL074192

53. Ma X., Fang H., Wang S., Chang S. (2021) Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci. 56(4). id: e2020RS007183.
https://doi.org/10.1029/2020RS007183

54. Mendillo M. (1981) The effect of rocket launches on the ionosphere. Adv. Space Res. 1(2). 275-290.
https://doi.org/10.1016/0273-1177(81)90302-1

55. Mendillo M. (1988) Ionospheric holes: A review of theory and recent experiments. Adv. Space Res. 8(1). 51-62.
https://doi.org/10.1016/0273-1177(88)90342-0

56. Mendillo M., Baumgardner J., Allen D. P., Foster J., Holt J., Ellis G. R. A., Klekociuk A., Reber G. (1987) Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies. Science. 238(4831). 1260-1264.
https://doi.org/10.1126/science.238.4831.1260

57. Mendillo M., Hawkins G. S., Klobuchar J. A. (1975) A large-scale hole in the ionosphere caused by the launch of Skylab. Science. 187(4174). 343-346.
https://doi.org/10.1126/science.187.4174.343

58. Mendillo M., Hawkins G. S., Klobuchar J. A. (1975) A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res. 80(16). 2217- 2228.
https://doi.org/10.1029/JA080i016p02217

59. Nakashima Y., Heki K. (2014) Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan. Radio Sci. 49(7). 497-505.
https://doi.org/10.1002/2014RS005413

60. Saha K., De B. K., Paul B., Guha A. (2020) Satellite launch vehicle effect on the Earth's lower ionosphere: A case study. Adv. in Space Res. 65(11). 2507-2514.
https://doi.org/10.1016/j.asr.2020.02.026

61. Savastano G., Komjathy A., Shume E., Vergados P., Ravanelli M., Verkho¬glya¬dova O., Meng X., Crespi M. (2019) Advantages of geostationary satellites for iono¬spheric anomaly studies: Ionospheric plasma depletion following a rocket launch. Remote Sensing. 11(14). id. 1734.
https://doi.org/10.3390/rs11141734

62. Ssessanga N., Kim Y. H., Choi B., Chung J.-K. (2018) The 4D-var estimation of North Korean rocket exhaust emissions into the ionosphere. J. Geophys. Res.: Space Physics. 123(3). 2315-2326.
https://doi.org/10.1002/2017JA024596

63. Wand R. H., Mendillo M. (1984) Incoherent scatter observations of an artificially modified ionosphere. J. Geophys. Res. 89(A1). 203-215.
https://doi.org/10.1029/JA089iA01p00203

64. Zhu J., Fang H., Xia F., Wan T., Tan X. (2019) Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys. 2019. id: 7935067.
https://doi.org/10.1155/2019/7935067

65. Zhu J., Fang H. (2020) Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. in Space Res. 65(3). 933-942.
https://doi.org/10.1016/j.asr.2019.10.028

66. Zinn J, Sutherland C. D., Stone S. N., Duncan L. M., Behnke R. (1982) Ionospheric effects of rocket exhaust products: HEAO-C and Skylab. J. Atmos. and Terr. Phys. 44(12). 1143-1171.
https://doi.org/10.1016/0021-9169(82)90025-3