Resonance electromagnetic effect of the Kamchatka meteoroid

Рубрика: 
Luo, Y, 1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(1):3-16
https://doi.org/10.15407/kfnt2023.01.003
Start Page: Space Physics
Язык: Ukrainian
Аннотация: 

A large meteoroid entered the terrestrial atmosphere and exploded at 26-km altitude (geographic coordinates 56.9°N, 172.4deg;E) between the Kamchatka Peninsula and Alaska over the Bering Sea at 23:48:20 UT on December 18, 2018. The meteoroid has been termed the Kamchatka or Bering Sea meteoroid. Its basic parameters are as follows: calculated total impact energy 173 kt of TNT, total optical radiated energy 1.3*1014 J, mass 1.4 kt, speed 32 km/s, size 9.4 m, and the trajectory directed at an angle of 68.6deg; with respect to the horizon. The Kamchatka (Bering Sea) meteoroid entering the atmosphere turned down to be accompanied by the generation of a transient resonance electromagnetic signal in the 25...35 mHz band observable in the vicinity of the meteoroid explosion and in the magnetically conjugate region. The 0.2...0.8-nT amplitude oscillations were observed to occur over a 7 min interval. The purpose of present work is to analyze the observations of the resonance electromagnetic effect from the Kamchatka meteoroid and to discuss a mechanism for this effect. The analysis of the resonance effect in the Earth’s magnetic field is based on the database data with 1-s temporal resolution and 1-nT amplitude resolution collected by the Intermagnet magnetometer network of magnetic observatories. The distance range between the site of the meteoroid explosion and the magnetic observatories varied from 1,000 to 5,000 km in the northern hemisphere and from 9,010 to 12,425 km in the southern hemisphere. The only acceptable mechanism has been established to be associated with the magnetic field displacement in the magnetosphere by the explosive impact of the celestial body, whereas only negligibly small part of the meteoroid energy is spent on the generation of magnetic field perturbations. The meteoroid energy losses are similar to the losses in the reactive elements in the radio frequency circuits, i.e., they return into the system. After the meteoroid passes, the oscillations cease, and the system returns into the initial state. The main results are summarized as follows. The resonance electromagnetic oscillations arose 13 and 3 min prior to the Kamchatka meteoroid explosion. The duration of each perturbation was observed to be close to 7 min. The parameters of the quasi-periodic perturbations were similar to the parameters of magnetic Pc3 pulsations; however, they were observed to occur in the X component of the magnetic field, but not in the Y component of the magnetic field. Their periods were observed to be in the 33...36-s range, and the amplitudes in the 0.4...0.9 nT range. Similar resonance oscillations were recorded and in the magnetically conjugate region. A mechanism for generating the resonance oscillations has been put forward. The essence of the mechanism is that the meteoroid explosively impacts the magnetosphere and deforms the magnetic field lines that begin to oscillate at their eigenfrequencies. Depending on the McIlwain L-shell, the period has been calculated to be 19...169 s. For instance, setting L ≈ 3...3.2 yields 28...34 s, which is close to the observed period of 30 s. The generation of the resonance oscillations consumes ~10–4 part of the meteoroid kinetic energy.

Ключевые слова: electromagnetic effect mechanism, explosive impact, Kamchatka meteoroid, magnetic field line oscillation, resonance effect
References: 

1. Gordeev E. I., Kulichkov S. N., Firstov P. P., Popov O. E., Chunchuzov I. P., Budi¬lov D. I., Chebrov D. V. (2018). Infrasonic waves and assessment of the explosion energy of the Bering sea meteoroid on December 19, 2018. Dokl. Earth Sciences. 489, part 2, 1436-1439.
https://doi.org/10.1134/S1028334X19120043

2. Skripko K. A. (2019). Bering Sea meteor huge explosion. Earth's Life. 41 (2).

3. Chernogor L. F. (2013). Large-scale disturbances in the Earth's magnetic field associated with the Chelyabinsk meteorite. Radiofizika i elektronika. 4 (18) (3), 47-54 [in Russian].

4. Chernogor L. F. (2013). The main physical effects associated with the Chelyabinsk bolide passage. In: Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul: Proceedings of the international scientific-practical conference. Chelyabinsk, Russia: Krai Ra Publ., June 21 - 22, 2013, 148-152 [in Russian].

5. Chernogor L. F. (2013). Plasma, electromagnetic and acoustic effects of meteorite Chelyabinsk. Inzhenernaja fizika. 8, 23-40 [in Russian].

6. Chernogor L. F. (2014) Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 54 (5), 613-624.
https://doi.org/10.1134/S001679321405003X

7. Chernogor L. F. (2018). Magnetospheric Effects during the approach of the Chelyabinsk Meteoroid. Geomagnetism and Aeronomy. 58 (2), 252-265.
https://doi.org/10.1134/S0016793218020044

8. Chernogor L. F. (2020). Effects of the Lipetsk meteoroid in the geomagnetic field. Geomagnetism and Aeronomy. 60 (3), 355-372.
https://doi.org/10.1134/S0016793220030032

9. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2021). Ionospheric effects of the Kamchatka meteoroid: results of multiple-path oblique incidence. 13th International School-Conference «Problems of Geocosmos». Abstracts. (March 24-27, 2021, St. Petersburg, Russia), 380-388 [In Russian].

10. Chernogor L. F. (2021). Kamchatka meteoroid effects in the lithosphere - atmosphere - ionosphere - magnetosphere system. 13th International School-Conference «Pro¬blems of Geocosmos». Abstracts. (March 24-27, 2021, St. Petersburg, Russia), 400-410 [In Russian].

11. Chernogor L. F. (2020). Geomagnetic variations caused by the Lipetsk meteoroid's passage and explosion: Measurement results. Kinematics and Phys. Celestial Bodies. 36(2), 79-93.
https://doi.org/10.3103/S0884591320020038

12. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2020). Parameters of the infrasonic signal generated by the Kamchatka meteoroid. Kinematics and Phys. Celestial Bodies. 36(5), 222-237.
https://doi.org/10.3103/S0884591320050037

13. Chernogor L. F. (2022). Kamchatka meteoroid effects in the geomagnetic field. Kinematics and Phys. Celestial Bodies. 38 (1), 25-48.
https://doi.org/10.3103/S0884591322010032

14. Borovika J., Setvk M., Roesli H., Kerkmann J. K. (2020). Satellite observation of the dust trail of a major bolide event over the Bering Sea on December 18, 2018. Astron. and Astrophys. 644, A58.
https://doi.org/10.1051/0004-6361/202039393

15. Brown P. G., Assink J. D., Astiz L., Blaauw R., Boslough M. B., Borovika J., Brachet N., Brown D., Campbell-Brown M., Ceranna L., Cooke W., De Groot-Hedlin C., Drob D. P., Edwards W., Evers L. G., Garces M., Gill J., Hedlin M., Kingery A., Laske G., Le Pichon A., Mialle P., Moser D. E., Saffer A., Silber E., Smets P., Spalding R. E., Spurn P., Tagliaferri E., Uren D., Weryk R. J., Whitaker R., Krzeminski Z. (2013). 500-kilotone airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature. 503 (7475). P. 238-241.
https://doi.org/10.1038/nature12741

16. Center for Near Earth Object Studies URL: https://cneos.jpl.nasa.gov/fireballs/ (Last accessed: 11.07.2021).

17. Chapman R., Ashour A. A. (1965). Meteor geomagnetic effects. Smithsonian Contributions to Astrophys. 8 (7). P. 181-197.
https://doi.org/10.5479/si.00810231.8-7.181

18. Chernogor L. F. (2020). Physical effects of the Kamchatka meteoroid. Astronomy and Space Physics in the Kyiv University. Book of Abstracts. May 27-29, 2020. Kyiv, Ukraine. 70-71.

19. Chernogor L. F. (2021). Litosphere - atmosphere - ionosphere - magnetosphere effects of the Kamchatka meteoroid. 13th International Conference and School «Problems of Geocosmos». March 24-27, 2021. St. Petersburg, St. Petersburg University. Section STP. Solar-Terrestrial physics. STP004.

https://geo.phys.spbu.ru/geocosmos/2020/data/data/htmls/STP/STP004.html

20. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V., Zheng Yu. Ionospheric effects of the Kamchatka meteoroid. 13th International Conference and School «Problems of Geocosmos». March 24-27, 2021. St. Petersburg, St. Petersburg University. Section STP. Solar-Terrestrial physics. STP002.

https://geo.phys.spbu.ru/geocosmos/2020/data/data/htmls/STP/STP002.html

21. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2020). Infrasonic effects of the Kam¬chatka meteoroid. Astronomy and Space Physics in the Kyiv University. Book of Abstracts. May 27-29, 2020. Kyiv, Ukraine. P. 71-72.

22. Chernogor L. F. (2022). Kamchatka meteoroid effects in the lithosphere - atmosphere - ionosphere - magnetosphere system. In: Kosterov A., Bobrov N., Gordeev E., Kulakov E., Lyskova E., Mironova I. (eds). Problems of Geocosmos-2020. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. P. 365-377.
https://doi.org/10.1007/978-3-030-91467-7_27

23. Dobrowolny M., Veltri P. (1986). Structure of Alfven wings associated with a conductor moving across a magnetoplasma. Astron. and Astrophys. 167. P. 179-185.

24. Gavrilov B. G., Pilipenko V. A., Poklad Y. V., Ryakhovsky I. A. (2020). Geomagnetic effect of the Bering Sea meteoroid. Russian J. Earth Sci. 20 (6), no. ES6009.
https://doi.org/10.2205/2020ES000748

25. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Shulga S. N., Zheng Y. (2020). Ionospheric effects of the Kamchatka meteoroid: Results from multipath oblique sounding. J. Atmos. and Solar-Terr. Phys. 207(105336).
https://doi.org/10.1016/j.jastp.2020.105336

26. Luo Y., Yao Y., Shan L. (2020). Analysis of ionospheric disturbances caused by the 2018 Bering Sea meteor explosion based on GPS observations. Sensors. 20 (11). 3201.
https://doi.org/10.3390/s20113201

27. Pilger C., Gaebler P., Hupe P., Ott T., Drolshagen E. (2020). Global monitoring and characterization of infrasound signatures by large fireballs. Atmosphere. 11 (1). 83.
https://doi.org/10.3390/atmos11010083

28. Popova O. P. (2021). Chelyabinsk meteorite. Oxford Research Encyclopedia of Planetary Science. DOI: 10.1093/acrefore/9780190647926.013.22
https://doi.org/10.1093/acrefore/9780190647926.013.22

29. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchen¬ko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Komatsu M., Mikouchi T. (2013). Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. 342. 1069-1073.
https://doi.org/10.1126/science.1242642

30. Popova O. P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V. I., Badyukov D. D., Yin Q.-Z., Gural P. S., Albers J., Granvik M., Evers L. G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Yu. S., Korotkiy S., Serdyuk I., Korochantsev A. V., Larionov M. Yu., Glazachev D., Mayer A. E., Gisler G., Gladkovsky S. V., Wimpenny J., Sanborn M. E., Yamakawa A., Verosub K. L., Rowland D. J., Roeske S., Botto N. W., Friedrich J. M., Zolensky M. E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J. I., Zhou Q., Li X.-H., Li Q.-L., Liu Yu, Tang G.-Q., Hiroi T., Sears D., Weinstein I. A., Vokhmintsev A. S., Ishchen¬ko A. V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M. K., Komatsu M., Mikouchi T. (2013). Supplementary material for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342. 146.
https://doi.org/10.1126/science.1242642

31. Redd N. T. (2019). Fireball over the Bering Sea. Eos. 100.
https://doi.org/10.1029/2019EO119503