Analysis of GNSS observations (gps weeks 1934—2105) for the propagation of the IGS14 reference frame on the territory of Ukraine

Khoda, O
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(3):79-89
https://doi.org/10.15407/kfnt2023.03.079
Язык: Ukrainian
Аннотация: 

From January 29, 2017 to May 16, 2020 (GPS weeks 1934—2105) all products of the International GNSS Service (IGS) — precise ephemerides of GPS and GLONASS satellites, coordinates and velocities of permanent GNSS stations, etc. — were based on the IGS14 reference frame, the first IGS realization of the release of the International Terrestrial Reference Frame ITRF2014. Observations of GNSS satellites at permanent stations located in Ukraine and in the Eastern Europe for this period were processed in the GNSS Data Analysis Centre of the Main Astronomical Observatory NAS of Ukraine. The processing was carried out with the Bernese GNSS Software ver. 5.2 software according to the requirements of the EUREF Permanent GNSS Network (EPN), that were valid at that time. In total, observations on 277 GNSS stations, including 205 Ukrainian stations belonging to the following operators of GNSS networks: MAO NAS of Ukraine, StateGeoCadastre of Ukraine (UPN GNSS), NU Lviv Polytechnic (GeoTerrace), PJSC System Solutions (System.NET), Navigation and Geodetic Center (NGC.net), UA-EUPOS/ZAKPOS, E.P.S. LLC, Coordinate navigation maintenance system of Ukraine (NET.Spacecenter), Kiev Institute of Land Relations (KyivPOS), KMC LLC, were processed. The IGS14 reference frame was set by No-Net-Translation conditions on the coordinates of the EPN Class A stations from the EPN C2100 catalogue. As result, the stations’ coordinates in the IGS14 reference frame and the zenith tropospheric delays for all stations were estimated. The mean repeatabilities for components of stations’ coordinates for all weeks (the characteristics of the precision of the received daily and weekly solutions) are in the following ranges: for north and east components — from 0.6 mm to 1.4 mm (average values are 0.93 mm and 1.00 mm respectively) with outliers of 2.02 mm and 1.55 mm for GPS week 2085 and 2091 respectively, for height component — from 2.0 mm to 5.5 mm (average value is 3.51 mm).

Ключевые слова: GNSS, IGS14 reference frame, permanent stations
References: 

1. Altamimi Z., Rebischung P., Mtivier L., Collilieux X. (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling non-linear station motions. J. Geophys. Res. Solid Earth. 121. 6109-6131.
https://doi.org/10.1002/2016JB013098

2. Altamimi Z., Rebischung P., Mtivier L., Collilieux X. (2017) Analysis and results of ITRF2014. IERS Technical Note No. 38. Frankfurt am Main: Verlag des Bundesamts fr Kartographie und Geodsie. 76 p.

3. Antenna Calibrations. National Geodetic Survey. (2022)
URL: https://geodesy.noaa.gov/ANTCAL/ (Last accessed 15.12.2022).

4. Bernese GNSS Software Version 5.2. (2015) (Eds Dach R., Lutz S., Walser P., Fridez P.). Berne: Astronomical Institute, University of Berne. 894 p.
DOI: 10.7892/boris.72297.

5. Boehm J., Werl B., Schuh H. (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data. J. Geophys. Res. 111 (B2). Article B02406.
https://doi.org/10.1029/2005JB003629

6. Bos M. S., Scherneck H.-G. (2022) Ocean tide loading provider. Onsala Space Observatory. URL: http://holt.oso.chalmers.se/loading/ (Last accessed 15.12.2022).

7. Bruyninx C., Legrand J., Fabian A., Pottiaux E. (2019) GNSS metadata and data validation in the EUREF Permanent Network, GPS Solut. 23 (4). Article 106. DOI: 10.1007/s10291-019-0880-9.
https://doi.org/10.1007/s10291-019-0880-9

8. Dach R., Schaer S., Arnold D., Kalarus M., Prange L., Stebler P., Villiger A., Jaeggi A. (2020) CODE final product series for the IGS. Astronomical Institute, University of Bern. DOI: 10.7892/boris.75876.4. URL: http://www.aiub.unibe.ch/download/ CODE (Last accessed 22.12.2022).

9. Dawidowicz K. (2018) IGS08.ATX to IGS14.ATX change dependent differences in a GNSS-derived position time series. Acta Geodynamica et Geromaterialia. 15 (4). 363-378. DOI:10.13168/AGG.2018.0027.
https://doi.org/10.13168/AGG.2018.0027

10. Guidelines for the EPN Analysis Centres. (2022) 9 p. URL: http://epncb.eu/_documentation/guidelines/guidelines_analysis_centres.pdf (Last accessed 15.12.2022).

11. IERS Conventions (2010). (Eds. Petit G., Luzum B.). IERS Technical Note No. 36. Frankfurt am Main. 179 p.

12. Johnston G., Riddell A., Hausler G. (2017) The International GNSS Service. Teunissen P. J. G., Montenbruck O. (Eds.), Springer Handbook of Global Navigation Satellite Systems (1st ed., P. 967-982). Cham, Switzerland: Springer International Publishing.
https://doi.org/10.1007/978-3-319-42928-1

13. Letellier T. (2004) Etude des ondes de mare sur les plateaux continentaux: Thse doctorale. Universit de Toulouse III, Ecole Doctorale des Sciences de l'Univers, de l'Environnement et de l'Espace. 237 p.

14. Pavlis N. K., Holmes S. A., Kenyon S. C., Factor J. K. (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res. 117 (B4). Article B04406. DOI: 10.1029/2011JB008916.
https://doi.org/10.1029/2011JB008916

15. Ray R. D., Ponte R. M. (2003) Barometric tides from ECMWF operational analyses. Ann. Geophys. 21 (8). 1897-1910. DOI: 10.5194/angeo-21-1897-2003.
https://doi.org/10.5194/angeo-21-1897-2003

16. Ray R. D., Steinberg D. J., Chao B. F., Cartwright D. E. (1994) Diurnal and semi¬diurnal variations in the Earth's rotation rate induced by oceanic tides. Science. 264 (5160). 830-832.
https://doi.org/10.1126/science.264.5160.830

17. Rebischung P., Altamimi Z., Ray J., Garayt B. (2016) The IGS contribution to ITRF2014. J. Geod. 90. 611-630. DOI: 10.1007/s00190-016-0897-6.
https://doi.org/10.1007/s00190-016-0897-6

18. Rebischung P., Schmid R. (2016) IGS14/igs14.atx: a new framework for the IGS products. Presented at the December 2016 Conference: AGU Fall Meeting. San Francisco (USA). URL: https://www.researchgate.net/profile/Ralf-Schmid-2/publication/311654495... products/links/5852b2cf08ae0c0f32226ee7/IGS14-igs14atx-a-new-framework-for-the-IGS-products.pdf (Last accessed 22.12.2022).

19. Schmid R., Dach R., Collilieux X., Jggi A., Schmitz M., Dilssner F. (2016) Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod. 90 (4). 343-364.
https://doi.org/10.1007/s00190-015-0876-3

20. Standish E. M. (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405. Jet Propulsion Laboratory, Interoffice Memorandum. IOM 312.F-98-048. 18 p.
URL: ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf (Last accessed 15.12.2022).