Development of models of acoustic-gravity waves in the upper atmosphere (overview)

Рубрика: 
1Cheremnykh, OK, 1Fedorenko, AK, Kryuchkov, EI, Klymenko, YO, 1Zhuk, IT
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(1):3-23
https://doi.org/10.15407/kfnt2024.01.003
Язык: Ukrainian
Аннотация: 

We present the results of studies of acoustic-gravity waves (AGWs) in the upper atmosphere of the Earth obtained by the authors over the last years. The work has been mainly aimed at development of the AGWs theoretical models taking into account the properties of the real atmosphere and these models verification based on spacecraft measurement data. The possibility of the existence of new types of evanescent acoustic-gravity waves in the isothermal atmosphere is theoretically shown. In particular, a previously unknown inelastic mode and a family of evanescent pseudo-modes are discussed. The possibility of observing evanescent modes on the Sun and in the Earth’s atmosphere is analyzed. The peculiarities of the propagation of the acoustic-gravity waves at the boundary of two isothermal half-spaces with different temperatures are studied in dependence of their spectral parameters and the magnitude of the temperature jump at the boundary. The peculiarities of the interaction of acoustic-gravity waves with spatially inhomogeneous atmospheric flows are also studied. It is analyzed the observed effects that are a consequence of such interaction. It is highlighted the azimuths of the wave propagation, the change in their amplitudes, and the blocking effect in the counterflow. The influence of vertical non-isothermality on propagation of acoustic-gravity waves including the modification of acoustic and gravitational regions depending on the temperature is studied. On the basis of modified Navier- Stokes and heat transfer equations, the influence of attenuation on the propagation of acoustic-gravity waves in the atmosphere is analyzed. It is also considered the attenuation of various types of evanescent acoustic-gravity waves in the atmosphere. It is shown that the rotation of the atmosphere leads to the modification of the continuous spectrum of evanescent acoustic-gravity waves with frequencies greater than the Coriolis parameter.

Ключевые слова: acoustic-gravity wave, evanescent wave mode, upper atmosphere, Viscosity
References: 

1. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K. (2020). Attenuation of acoustic-gravity waves in an isothermal atmosphere: Consideration with the modified Navier-Stokes and heat-transfer equations. Kinematics and Phys. Celestial Bodies. 36 (5). 212-221. https://doi.org/10.3103/S0884591320050049 2. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K., Melnychuk S.V., Zhuk I. T. (2022). Properties of acoustic-gravity waves at the boundary of two isothermal media. Kinematics and Phys. Celestial Bodies. 38 (6). 340-350. https://doi.org/10.3103/S0884591322060022 3. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K., Rapoport Yu. G. (2020). Influence of Vertical Heterogeneity of Atmospheric Temperature on the Propagation of Acoustic-Gravity Waves. Kinematics and Phys. Celestial Bodies. 36 (6). 253-264. https://doi.org/10.3103/S0884591320060033 4. Cheremnykh O. K., Selivanov Yu. O., Zakharov I. V. (2010). The influence of compressibility and non-isothermality of the atmosphere on the propagation of acoustic-gravity waves. Space Science and Technology. 16 (1). 9-19. https://doi.org/10.15407/knit2010.01.009 5. Cheremnykh O. K., Fedorenko A. K., Vlasov D. I., Melnychuk S. V. (2021). Evanescent acoustic-gravity wave modes in the nonisothermal atmosphere. Kinematics and Phys. Celestial Bodies. 37 (4). 3-17. https://doi.org/10.3103/S0884591321040024 6. Beer T. (1974). Atmospheric Waves. John Wiley, New York, 300. 7. Bespalova A.V., Fedorenko A. K., Cheremnykh O. K., Zhuk I. T. (2016). Satellite observations of wave disturbances caused by moving solar terminator. J. Atmos. Solar. Terr. Phys. 140. 79-85. https://doi.org/10.1016/j.jastp.2016.02.012 8. Cheremnykh O. K., Fedorenko A. K., Kryuchkov E. I., Selivanov Y. A. (2019). Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth's and Solar atmospheres. Ann. Geophys. 37 (3). 405-415. https://doi.org/10.5194/angeo-37-405-2019 9. Cheremnykh O. K., Fedorenko A. K., Selivanov Y. A., Cheremnykh S. O. (2021). Continuous spectrum of evanescent acoustic-gravity waves in an isothermal atmosphere. Mon. Notic. Roy. Astron. Soc. 503(4). 5545-5553. 10. Cheremnykh O., Kaladze T., Selivanov Y., Cheremnykh S. (2022). Evanescent acoustic-gravity waves in a rotating stratified atmosphere. Adv. Space Res. 69 (3). 1272-1280. https://doi.org/10.1016/j.asr.2021.10.050 11. Fedorenko A. K, Bespalova A. V, Cheremnykh O. K, Kryuchkov E. I. (2015). A dominant acoustic-gravity mode in the polar thermosphere. Ann. Geophys. 33 (1). 101-108. https://doi.org/10.5194/angeo-33-101-2015 12. Fedorenko A. K., Kryuchkov E. I, Cheremnykh O. K., Klymenko Yu. O., Yampolski Yu. M. (2018). Peculiarities of acoustic-gravity waves in inhomogeneous flows of the polar thermosphere. J. Atmos. and Solar-Terr. Phys. 178, 17-23. doi.org/10.1016/j.jastp.2018.05.009. 13. Fedorenko A. K., Kryuchkov E. І., Cheremnykh O. K., Selivanov Y. A. (2021). Dissipation of acoustic-gravity waves in the Earth's thermosphere. J. Atmos. Terr. Phys. 212. 105488. https://doi.org/10.1016/j.jastp.2020.105488 14. Fritts D. C., Vadas S. L. (2008). Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann. Geophys. 26, 3841-3861. . https://doi.org/10.5194/angeo-26-3841-2008 15. Forbes J. M., Moudden Y. (2009). Solar terminator wave in a Mars general circulation model. Geophys. Res. Lett. 36. 17201. https://doi.org/10.1029/2009GL039528 16. Ghosh P., Antia H. M., Chitre S. M. (1995). Seismology of the solar f-mode. I. Basic signatures of shearing velocity fields. Astrophys. J. 451. 851-858. https://doi.org/10.1086/176271 17. Hajkovicz L. A. (1991). Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances. Planet. Space. Sci. 39, 1189-1196. https://doi.org/10.1016/0032-0633(91)90170-F 18. Hines C. O. (1960). Internal gravity waves at ionospheric heights. Can. J. Phys. 38. 1441-1481. https://doi.org/10.1139/p60-150 19. Huang K. M., Zhang S. D., Yi F., Huang C. M., Gan Q., Gong Y., Zhang Y. H. (2014). Nonlinear interaction of gravity waves in a nonisothermal and dissipative atmosphere. Ann. Geophys. 32 (3). 263-275. https://doi.org/10.5194/angeo-32-263-2014 20. Innis J. L., Conde M. (2002). Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data. J. Geophys. Res. 107. NA12. https://doi.org/10.1029/2002JA009370 21. Johnson F. S., Hanson W. B., Hodges R. R., Coley W. R., Carignan G. R., Spencer N. W. (1995). Gravity waves near 300 km over the polar caps. J. Geophys. Res. 100. 23993-24002. https://doi.org/10.1029/95JA02858 22. Jones W. L. (1969). Non-divergent oscillations in the solar atmosphere. Solar Phys. 7. 204-209. https://doi.org/10.1007/BF00224898 23. Kaladze T. D., Pokhotelov O. A., Shah H. A., Khan M. I., Stenflo L. (2008) Acoustic-gravity waves in the Earth's ionosphere. J. Atmos. Sol.-Terr. Phys. 70. 1607-1616. https://doi.org/10.1016/j.jastp.2008.06.009 24. Lighthill J. (1978). Waves in Fluids. Cambridge University Press, 504. 25. Longuet-Higgins M. S. (1964). Planetary waves on a rotating sphere. P.1. Proc. Roy. Soc. A. 279. 446-473. https://doi.org/10.1098/rspa.1964.0116 26. Prikryl P., Muldren D. B., Sofko G. J., Ruohoniemi J. M. (2005). Solar wind Alfven waves: a source of pulsed ionospheric convection and atmospheric gravity waves. Ann. Geophys. 23. 401-417. https://doi.org/10.5194/angeo-23-401-2005 27. Rapoport Yu. G., Gotynyan O. E., Ivchenko V. M., Kozak L. V., Parrot M. (2004). Effect of acoustic-gravity wave of the lithospheric origin on the ionospheric F region before earthquakes. Phys. and Chem. Earth. 29. 607-616. https://doi.org/10.1016/j.pce.2003.10.006 28. Rosental C. S., Gough D. O. (1994). The solar f-mode as interfacial mode at the chromosphere-corona transition. Astrophys. J. 423. 488-495. https://doi.org/10.1086/173826 29. Rossby C.-G. (1940). Planetary flow patterns in the atmosphere, Quart. J. Roy. Meteorol. Soc. 66. 68-87. https://doi.org/10.1002/j.1477-870X.1940.tb00130.x 30. Roy A., Roy S., Misra A. P. (2019). Dynamical properties of acoustic-gravity waves in the atmosphere. J. Atmos. and Solar-Terr. Phys. 186. 78-81. https://doi.org/10.1016/j.jastp.2019.02.009 31. Sauli P., Boska J. (2001). Tropospheric events and possible related gravity wave activity effects on the ionosphere. J. Atmos. Solar. Terr. Phys. 63 (9). 945-950. https://doi.org/10.1016/S1364-6826(00)00205-4 32. Schubert G., Walterscheid R. L. (1984). Propagation of small-scale acoustic-gravity waves in the Venus atmosphere. J. Atmos. Sci. 41 (7). 1202-1213. https://doi.org/10.1175/1520-0469(1984)041<1202:POSSAG>2.0.CO;2 33. Simkhada D. B., Snively J. B., Taylor M. J., Franke S. J. (2009). Analysis and modeling of ducted and avanescent gravity waves observed in the Havaiian airglow. Ann. Geophys. 27. 3213-3224. https://doi.org/10.5194/angeo-27-3213-2009 34. Somsikov V. M. (1983). Solar terminator and dynamics of the atmosphere, Nauka, Alma-Ata. 35. Stenflo L., Shukla P. K. (2009). Nonlinear acoustic-gravity waves. J. Plasma Phys. 75. 841-847. https://doi.org/10.1017/S0022377809007892 36. Tolstoy I. (1963). The theory of waves in stratified fluids including the effects of gravity and rotation. Rev. Modern Phys. 35, N1. https://doi.org/10.1103/RevModPhys.35.207 37. Vadas S. L., Fritts M. J. (2005). Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J. Geophys. Res. 110(D15103). https://doi.org/10.1029/2004JD005574 38. Waltercheid R. L., Hecht J. H. (2005). A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance. J. Geophys. Res. 108(D11). 4340. https://doi.org/10.1029/2002JD002421 39. Yeh K. S., Liu C. H. (1974). Acoustic-gravity waves in the upper atmosphere. Rev. Geophys. and Space Phys. 12. 193-216. https://doi.org/10.1029/RG012i002p00193 40. Yiрit E., Aylward A. D., Medvedev A. S. (2008). Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study. J. Geophys. Res. 113. N D19106. https://doi.org/10.1029/2008JD010135 41. Zhang S. D., Yi F. (2002). A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. J. Geophys. Res. 107(D14). 1-9. https://doi.org/10.1029/2001JD000864