A statistical study of the CME properties based on angular width during the solar cycle 24

Рубрика: 
1Dharmashaktu, H, 2Lohani, NK
1Indira Priyadarshini Government Girls Commerce Post Graduate College Haldwani, Nainital 6GGH+J36, Nawabi Rd, Subhash Nagar, Haldwani, Uttarakhand 263139, India
2Motiram Baburam Government Post Graduate College Haldwani, Nainital, Nainital Road, Haldwani, Nainital, Uttarakhand 263139, India
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(4):3-21
https://doi.org/10.15407/kfnt2024.04.003
Язык: Ukrainian
Аннотация: 

The present work is carried out in order to analyze the data for more than 15000 coronal mass ejections (CMEs) during solar cycle 24, spanning the period of 2009—2017. We investigated, the properties of two categories of CMEs, narrow (W 20°) and normal (W > 20°), including angular width, linear speed, acceleration and their location. Based on statistical analysis, it is found the following. 1) 45 % of the CMEs found in the angular range of W = 10° and 30° with peak at 15°. 2) 70 % of the narrow and 60 % normal CMEs speed lies in the range of 150—400 km/s. The occurrence rate of both categories of CMEs declines sharply at linear speeds > 400 km/s and 0.1 % narrow while 1.95 % are of normal category, having the speeds above than 1000 km/s. 3) The 99 % of narrow and 82 % of normal CMEs are biased towards deceleration whereas small portion of normal CMEs do move with positive acceleration. We observed a low correlation between linear speed and acceleration –0.13 and –0.24 for narrow and normal CMEs respectively. 4) The latitudinal distribution of almost all narrow and normal CMEs were observed from equatorial regions during solar minimum, while during solar maximum, the distribution becomes wider and appears at all latitudes for both categories. Despite of the fact that, solar cycle 24 is a weaker one in terms of geoeffectivity, but we observe a greater number of CMEs than solar cycle 23 throughout the solar maximum.

Ключевые слова: angular width, narrow CMEs, normal CMEs, Sun
References: 

1. Anna Lakshmi M., Umapathy S., Prakash O., Vasanth V. (2011). Studies on some properties of coronal mass ejections based on angular width. Astrophys. and Space Sci. 335(2). 373-378.
https://doi.org/10.1007/s10509-011-0768-9

2. Bilenko I. A. (2014). Influence of the solar global magnetic-field structure evolution on CMEs. Solar Phys. 289(11). 4209-4237.
https://doi.org/10.1007/s11207-014-0572-0

3. Bronarska K., Wheatland M. S., Gopalswamy N., Michalek G. (2018). Very narrow coronal mass ejections producing solar energetic particles. Astron. and Astrophys. 619. A34.
https://doi.org/10.1051/0004-6361/201833237

4. Brueckner G. E., Howard R. A., Koomen M. J., Korendyke C. M., Michels D. J., Moses J. D., Socker D. G., Dere K. P., Lamy P. L., Llebaria A. (1995). The Large Angle Spectroscopic Coronagraph (LASCO). In: The SOHO mission. Springer. 357-402
https://doi.org/10.1007/978-94-009-0191-9_10

5. Dobrzycka D., Raymond J. C., Biesecker D. A., Li J., Ciaravella A. (2003). Ultraviolet spectroscopy of narrow coronal mass ejections. Astrophys. J. 588(1). 586.
https://doi.org/10.1086/374047

6. Gilbert H. R., Serex E. C., Holzer T. E., MacQueen R. M., McIntosh P. S. (2001). Narrow coronal mass ejections. Astrophys. J. 550(2). 1093.
https://doi.org/10.1086/319816

7. Gopalswamy N. (2006). Coronal mass ejections of solar cycle 23. J. Astrophys. and Astron. 27(2-3). 243-54.
https://doi.org/10.1007/BF02702527

8. Gopalswamy N., Akiyama S., Yashiro S., Mkel P. (2010). Coronal mass ejections from sunspot and non-sunspot regions. In: Magnetic Coupling between the Interior and Atmosphere of the Sun, Astrophys. and Space Sci. Proc. Eds S. S. Hasan, R. J. Rutten. 289-307.
https://doi.org/10.1007/978-3-642-02859-5_24

9. Gopalswamy N., Lara A., Yashiro S., Kaiser M. L., Howard R. A. (2001). Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207.
https://doi.org/10.1029/2001JA000177

doi:10.1029/2001JA000177.
https://doi.org/10.1029/2001JA000177

10. Gopalswamy N., Shimojo M., Lu W., Yashiro S., Shibasaki K., Howard R. A. (2003). Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. Astrophys. J. 586(1). 562-78.
https://doi.org/10.1086/367614

11. Gopalswamy N., Yashiro S., Krucker S., Stenborg G., Howard R. A. (2004). Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res.: Space Phys. 109(A12). 1-18.
https://doi.org/10.1029/2004JA010602

12. Gopalswamy N., Yashiro S., Michaіek G., Kaiser M. L., Howard R. A., Reames D. V., Leske R., Von Rosenvinge T. (2002). Interacting coronal mass ejections and solar energetic particles. Astrophys. J. 572(1). L103.
https://doi.org/10.1086/341601

13. Harrison R. A., Davies J. A., Barnes D., Byrne J. P., Perry C. H., Bothmer V., Eastwood J. P., Gallagher P. T., Kilpua E. K. J., Mstl C. (2018). CMEs in the heliosphere: I. A statistical analysis of the observational properties of CMEs detected in the heliosphere from 2007 to 2017 by STEREO/HI-1. Solar Phys. 293(5). 1-28.
https://doi.org/10.1007/s11207-018-1297-2

14. Howard R. A., Michels D. J., Sheeley N. R., Koomen M. J. (1982). The observation of a coronal transient directed at Earth. Astrophys. J. 263. L101-4.
https://doi.org/10.1086/183932

15. Howard R. A., Sheeley N. R., Koomen M. J., Michels D. J. (1985). Coronal mass ejections: 1979-1981. J. Geophys. Res.: Space Phys. 90(A9). 8173-91.
https://doi.org/10.1029/JA090iA09p08173

16. Hundhausen A. J. (1993). Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984-1989. J. Geophys. Res.: Space Phys. 98(A8). 13177- 13200.
https://doi.org/10.1029/93JA00157

17. Hundhausen A. J., Sawyer C. B., House L., Illing R. M. E., Wagner W. J. (1984). Coronal mass ejections observed during the solar maximum mission: Latitude distribution and rate of occurrence. J. Geophys. Res. 89(A5). 2639-46.
https://doi.org/10.1029/JA089iA05p02639

18. Kahler S. W., Reames D. V., Sheeley N. R. (2001). Coronal mass ejections associated with impulsive solar energetic particle events. Astrophys. J. 562(1). 558-565.
https://doi.org/10.1086/323847

19. Lamy P. L., Floyd O., Boclet B., Wojak J., Gilardy H., Barlyaeva T. (2019). Coronal mass ejections over solar cycles 23 and 24. Space Sci. Revs. 215(5). Id.39.
https://doi.org/10.1007/s11214-019-0605-y

20. Lindsay G. M., Luhmann J. G., Russell C. T., Gosling J. T. (1999). Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J. Geophys. Res.: Space Phys. 104(A6). 12515-12523.
https://doi.org/10.1029/1999JA900051

21. Mays M. L., Thompson B. J., Jian L. K., Colaninno R. C., Odstrcil D., Mstl C., Temmer M., Savani N. P., Collinson G., Taktakishvili A., Macneice P. J., Zheng Y. (2015). Propagation of the 2014 January 7 CME and resulting geomagnetic non-event. Astrophys. J. 812(2). 145.
https://doi.org/10.1088/0004-637X/812/2/145

22. Michaіek G., Gopalswamy N., Lara A., Manoharan P. K. (2004). Arrival time of halo coronal mass ejections in the vicinity of the Earth. Astron. and Astrophys. 423(2). 729-736. DOI: https://doi.org/10.1051/0004-6361:20047184.
https://doi.org/10.1051/0004-6361:20047184

23. Mittal N., Pandey K., Narain U., Sharma S. S. (2009). On properties of narrow CMEs observed with SOHO/LASCO. Astrophys. and Space Sci. 323(2). 135-145.
https://doi.org/10.1007/s10509-009-0055-1

24. Mittal N., Sharma J., Tomar V., Narain U. (2009). On distribution of CMEs speed in solar cycle 23. Planet. and Space Sci. 57(1). 53-57.
https://doi.org/10.1016/j.pss.2008.10.013

25. Moussas X., Polygiannakis J. M., Hillaris A., Preka-Papadema P., Andrikopoulou E. (2002). CME velocities, accelerations, widths and positions in the ascending phase of the solar cycle 23 (1996-2001). European Space Agency-Publications-ESA SP 505. 513-516.

26. Munro R. H., Gosling J. T., Hildner E., MacQueen R. M., Poland A. I., Ross C. L. (1979). The association of coronal other mass ejection transients with forms of solar activity. Solar Phys. 61(1). 201-215.
https://doi.org/10.1007/BF00155456

27. Munro R. H., Sime D. G. (1985). White-light coronal transients observed from Skylab May 1973 to February 1974: A classification by apparent morphology. Solar Phys. 97(1). 191-201.
https://doi.org/10.1007/BF00152988

28. Sachdeva N., Subramanian P., Vourlidas A., Bothmer V. (2017). CME dynamics using STEREO and LASCO observations: The relative importance of Lorentz forces and solar wind drag. Solar Phys. 292(9). 1-17.
https://doi.org/10.1007/s11207-017-1137-9

29. St. Cyr O. C., Burkepile J. T., Hundhausen A. J., Lecinski A. R. (1999). A comparison of ground-based and spacecraft observations of coronal mass ejections from 1980-1989. J. Geophys. Res.: Space Phys. 104(A6). 12493-12506.
https://doi.org/10.1029/1999JA900045

30. St. Cyr O. C., Howard R. A., Sheeley N. R., Plunkett S. P., Michels D. J., Paswaters S. E., Koomen M. J., Simnett G. M., Thompson B. J., Gurman J. B., Schwenn R., Webb D. F., Hildner E., Lamy P. L. (2000). Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res.: Space Phys. 105(A8). 18169-18185.
https://doi.org/10.1029/1999JA000381

31. Vourlidas A., Buzasi D., Howard R. A., Esfandiari E. (2002). Mass and Energy Properties of LASCO CMEs. In: Solar variability: from core to outer frontiers, proceedings of the 10th European solar physics meeting. Ed. A. Wilson, Prague, 9-14 Sept 2002. ESA. vol SP-506.

32. Wang L., Lin R. P., Krucker S. . M., Mason G. M. (2012). A statistical study of solar electron events over one solar cycle. Astrophys. J. 759(1). 69.
https://doi.org/10.1088/0004-637X/759/1/69

33. Wang Y.-M., Sheeley N. R. (2002). Coronal white-light jets near sunspot maximum. Astrophys. J. 575(1). 542-552.
https://doi.org/10.1086/341145

34. Wang Y. M., Sheeley N. R., Socker D. G., Howard R. A., Brueckner G. E., Michels D. J., Moses D., St Cyr O. C., Llebaria A., Delaboudiniere J. P. (1998). Observations of correlated white-light and extreme-ultraviolet jets from polar coronal holes. Astrophys. J. 508(2). 899.
https://doi.org/10.1086/306450

35. Wen Y., Maia D. J. F., Wang J. (2007). The CME acceleration problem: Error estimates in LASCO coronal mass ejection measurements. Astrophys. J. 657(2). 1117-1126.
https://doi.org/10.1086/507405

36. Yashiro S., Gopalswamy N., Michalek G., Howard R. A. (2003). Properties of narrow coronal massejections observed with LASCO. Advances in Space Res. 32(12). 2631-2635.
https://doi.org/10.1016/j.asr.2003.03.018

37. Yashiro S., Gopalswamy N., Michalek G., St. Cyr O. C., Plunkett S. P., Rich N. B., Howard R. A. (2004). A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res.: Space Phys. 109(A7). 1-11.
https://doi.org/10.1029/2003JA010282

38. Yashiro S., Michalek G., Gopalswamy N. (2008). A comparison of coronal mass ejec¬tions identified by manual and automatic methods. Ann. Geophys. 26(10). 3103- 3112.
https://doi.org/10.5194/angeo-26-3103-2008