TEC global disturbances in equatorial ionosphere during annular solar eclipse on June 21, 2020

Рубрика: 
1Chernogor, LF, Mylovanov, YB
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(4):3-33
https://doi.org/10.15407/kfnt2023.04.003
Язык: Ukrainian
Аннотация: 

Solar eclipse (SE) causes disturbances that can be recorded in all subsystems of the Earth — atmosphere — ionosphere — magnetosphere system, as well as in geophysical fields. The response of the system to the SE significantly depends on the magnitude of the eclipse, phase of the solar cycle, the state of atmospheric and space weather, the season, time and observation coordinates. Manifestations of the response are also determined by the observation technique. Despite the fact that the impact of the SE on the ionosphere has been studied for about 100 years, a number of unresolved issues remain. The purpose of this paper is to present the results of the analysis of temporal variations of TEC caused by the annular SE on June 21, 2020 in the equatorial ionosphere. We have analyzed 132 time dependences of TEC that covered a significant area with an eclipse. The maximum magnitude Mmax = 0.9940, which began at 04:47:45 UT, was observed in northern India in Uttarakhand and lasted 38 s. The state of space weather was favorable for the study of the effects of the SE on June 21, 2020. To detect the response of the ionosphere to the annular SE on June 21, 2020, the Global Navigation Satellite System signal recordings were processed. Time variations of TEC in the ionosphere on reference days and on the day with the SE on June 21, 2020 were analyzed on a global scale. For this purpose the results of measurements at 12 stations and 11 GPS satellites were used. The dependence of the deficit value and the relative reduction of TEC caused by the SE on the time of day was investigated. The lowest deficit value (–2...–3 TECU) was observed in the morning. In the daytime and in the evening hours it reached –4...–6 TECU. The relative decrease in TEC was almost independent of time of day and reached –30...–35 %. No stable dependence of TEC deficit on the eclipse magnitude was found. The relative decrease in TEC clearly depended on the magnitude of the SE: smaller values of the magnitude corresponded to smaller values of magnitude of the relative decrease. The duration of the TEC reduction by 1.5…2.5 h exceeded the duration of the eclipse. In the daytime and in the evening hours there was a delay of TEC minimum values in relation to the maximum magnitude of the SE by 10…20 min. Wave-like disturbances of TEC were practically absent. Undisturbed and disturbed by the eclipse TEC values significantly depended on the location of stations and the trajectory of satellites, which is due to the influence of equatorial ionization anomaly. This was the main feature of the ionospheric effects of the SE at latitudes 0°…30° N.

Ключевые слова: equatorial ionosphere, features of ionospheric eclipse effect, longitude and latitude dependences, solar eclipse, total electron content
References: 

1. Chernogor L. F. (2013). Physical effects of solar eclipses in atmosphere and geospace. (Kharkiv: V. N. Karazin Kharkiv National University) [in Russian].

2. Chernogor L. F., Garmash K. P. (2022). Ionospheric processes during the partial solar eclipse above Kharkiv on June 10, 2021. Kinematics and Phys. Celestial Bodies. 38(2), 61-72.
https://doi.org/10.3103/S0884591322020039

3. Chernogor L. F., Garmash K. P., Zhdanko Y. H., Leus S. G., Luo Y. (2021) Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021. Radio Phys. Radio Astron. 26(4), 326-343 [in Ukrainian].
https://doi.org/10.15407/rpra26.04.326

4. Chernogor L. F., Mylovanov Yu. B. (2022). Ionospheric effects from the June 10, 2021 solar eclipse in the Polar Region. Kinematics and Phys. Celestial Bodies. 38(4). 29-52.
https://doi.org/10.15407/kfnt2022.04.029

5. Chernogor L. F., Mylovanov Yu. B., Luo Y. (2022). Effects from the June 10, 2021 solar eclipse in the high-latitude ionosphere: Results of GPS observations. Radio Phys. Radio Astron. 27(1), 15-31 [in Ukrainian].
https://doi.org/10.15407/rpra27.02.093

6. Aa E., Zhang S.-R., Erickson P. J., Goncharenko L. P., Coster A. J., Jonah O. F., Lei J., Huang F., Dang T., Liu L. (2020). Coordinated ground-based and space-borne observations of ionospheric response to the annular solar eclipse on 26 December 2019. J. Geophys. Res. Space Phys. 125(11), e2020JA028296.
https://doi.org/10.1029/2020JA028296

7. Aa E., Zhang S.-R., Shen H., Liu S., Li J. (2021). Local and conjugate ionospheric total electron content variation during the 21 June 2020 solar eclipse. Adv. Space Res. 68(8), 3435-3454. DOI: 10.1016/j.asr.2021.06.015
https://doi.org/10.1016/j.asr.2021.06.015

8. Afraimovich E. L., Palamartchouk K. S., Perevalova N. P., Chernukhov V. V., Lukhnev A. V., Zalutsky V. T. (1998) Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data. Geophys. Res. Lett. 25(4), 465-468.
https://doi.org/10.1029/98GL00186

9. Chen C.-H., Lin C.-H. C., Matsuo T. (2019). Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach. Prog. Earth Planet. Sci. 6, 13. DOI: 10.1186/s40645-019-0263-4
https://doi.org/10.1186/s40645-019-0263-4

10. Cheng K., Huang Y.-N., Chen S.-W. (1992). Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region. J. Geophys. Res. Space Phys. 97(A1), 103-111.
https://doi.org/10.1029/91JA02409

11. Chen Y., Feng P., Liu C., Chen Y., Huang L., Duan J., Hua Y., Li X. (2021). Impact of the annular solar eclipse on June 21, 2020 on BPL time service performance. AIP Advances. 11, 115003.
https://doi.org/10.1063/5.0064445

12. Cherniak I., Zakharenkova I. (2018). Ionospheric total electron content response to the great american solar eclipse of 21 August 2017. Geophys. Res. Lett. 45(3), 1199-1208.
https://doi.org/10.1002/2017GL075989

13. Choudhary R. K., St.-Maurice J.-P., Ambili K. M., Sunda S., Pathan B. M. (2011). The impact of the January 15, 2010, annular solar eclipse on the equatorial and low latitude ionospheric densities. J. Geophys. Res. Space Phys. 116(A9), A09309.
https://doi.org/10.1029/2011JA016504

14. Cnossen I., Ridley A. J., Goncharenko L. P., Harding B. J. (2019). The response of the ionosphere-thermosphere system to the 21 August 2017 solar eclipse. J. Geophys. Res. Space Phys. 124(8), 7341-7355.
https://doi.org/10.1029/2018JA026402

15. Coster A. J., Goncharenko L., Zhang S.-R., Erickson P. J., Rideout W., Vierinen J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 44(24), 12041-12048.
https://doi.org/10.1002/2017GL075774

16. Dang T., Lei J. H., Wang W. B., Yan M. D., Ren D. X., Huang F. Q. (2020). Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse. Earth Planet. Phys. 4(3), 231-237. doi:10.26464/epp2020032.
https://doi.org/10.26464/epp2020032

17. Dang T., Lei J., Wang W., Zhang B., Burns A., Le H., Wu Q., Ruan H., Dou X., Wan W. (2018). Global responses of the coupled thermosphere and ionosphere system to the August 2017 great american solar eclipse. J. Geophys. Res. Space Phys. 123(8), 7040-7050.
https://doi.org/10.1029/2018JA025566

18. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018. Radio Sci. 55(2), e2019RS006866.
https://doi.org/10.1029/2019RS006866

19. Huang L., Liu C., Chen Y., Wang X., Feng P., Li X. (2021). Observations and analysis of the impact of annular eclipse on 10 MHz short-wave signal in Sanya area on June 21, 2020. AIP Advances. 11, 115317.
https://doi.org/10.1063/5.0068778

20. Huang F., Li Q., Shen X., Xiong C., Yan R., Zhang S.-R., Wang W., Aa E., Zhong J., Dang T., Lei J. (2020). Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020. J. Geophys. Res. Space Phys. 125(10), e2020JA028483.
https://doi.org/10.1029/2020JA028483

21. Huba J. D., Drob D. (2017). SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. 44(12), 5928-5935.
https://doi.org/10.1002/2017GL073549

22. Le H., Liu L., Ren Z., Chen Y., Zhang H. (2020). Effects of the 21 June 2020 solar eclipse on conjugate hemispheres: A modeling study. J. Geophys. Res. Space Phys. 125(11), e2020JA028344.
https://doi.org/10.1029/2020JA028344

23. Lei J., Dang T., Wang W., Burns A., Zhang B., Le H. (2018). Long-lasting response of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse. J. Geophys. Res. Space Phys. 123(5), 4309-4316.
https://doi.org/10.1029/2018JA025460

24. Liu J.-Y., Wu T.-Y., Sun Y.-Y., Pedatella N. M., Lin C.-Y., Chang L. C., Chiu Y.-C., Lin C.-H., Chen C.-H., Chang F.-Y., Lee I-T., Chao C.-K., Krankowski A. (2020). Lunar tide effects on ionospheric solar eclipse signatures: The August 21, 2017 event as an example. J. Geophys. Res. Space Phys. 125(12), e2020JA028472.
https://doi.org/10.1029/2020JA028472

25. Nayak C., Yiрit E. (2018). GPS-TEC observation of gravity waves generated in the ionosphere during 21 August 2017 total solar eclipse. J. Geophys. Res. Space Phys. 123(1), 725-738.
https://doi.org/10.1002/2017JA024845

26. Patel K., Singh A. K. (2021). Changes in atmospheric parameters due to annular solar eclipse of June 21, 2020, over India. Indian J. Phys.
https://doi.org/10.1007/s12648-021-02112-2

27. Perry G. W., Watson C., Howarth A. D., Themens D. R., Foss V., Langley R. B., Yau A. W. (2019). Topside ionospheric disturbances detected using radio occul¬ta¬tion measurements during the August 2017 solar eclipse. Geophys. Res. Lett. 46(13), 7069-7078. DOI:10.1029/2019GL083195.
https://doi.org/10.1029/2019GL083195

28. Reinisch B. W., Dandenault P. B., Galkin I. A., Hamel R., Richards P. G. (2018). Investigation of the electron density variation during the 21 August 2017 solar eclipse. Geophys. Res. Lett. 45(3), 1253-1261.
https://doi.org/10.1002/2017GL076572

29. entrk E., Arqim Adil M., Saqib M. (2021). Ionospheric total electron content respon¬se to annular solar eclipse on June 21, 2020. Adv. Space Res. 67(6), 1937-1947.
https://doi.org/10.1016/j.asr.2020.12.024

30. Shagimuratov I. I., Zakharenkova I. E., Tepenitsyna N. Y., Yakimova G. A., Efishov I. I. (2021). Features of the ionospheric total electronic content response to the annular solar eclipse of June 21, 2020. Geomagn. Aeron. 61, 756-762.
https://doi.org/10.1134/S001679322105011X

31. Sun Y.-Y., Chen C.-H., Qing H., Xu R., Su X., Jiang C., Yu T., Wang J., Xu H., Lin K. (2021). Nighttime ionosphere perturbed by the annular solar eclipse on June 21, 2020. J. Geophys. Res. Space Phys. 126(9), e2021JA029419.
https://doi.org/10.1029/2021JA029419

32. Sun Y.-Y., Liu J.-Y., Lin C. C.-H., Lin C.-Y., Shen M.-H., Chen C.-H., Chen C.-H., Chou M.-Y. (2018). Ionospheric bow wave induced by the Moon shadow ship over the continent of United States on 21 August 2017. Geophys. Res. Lett. 45(2), 538-544.
https://doi.org/10.1002/2017GL075926

33. Tripathi G., Singh S. B., Kumar S., Ashutosh K. Singh, Singh R., Singh A. K. (2022). Effect of 21 June 2020 solar eclipse on the ionosphere using VLF and GPS observations and modeling. Adv. Space Res. 69(1), 254-265.
https://doi.org/10.1016/j.asr.2021.11.007

34. Tsai H. F., Liu J. Y. (1999). Ionospheric total electron content response to solar eclipses. J. Geophys. Res. Space Phys. 104(A6), 12657-12668.
https://doi.org/10.1029/1999JA900001

35. Wang J., Zuo X., Sun Y.-Y., Yu T., Wang Y., Qiu L., Mao T., Yan X., Yang N., Qi Y., Lei J., Sun L., Zhao B. (2021). Multilayered sporadic-E response to the annular solar eclipse on June 21, 2020. Space Weather. 19(3), e2020SW002643.
https://doi.org/10.1029/2020SW002643

36. Wang W., Dang T., Lei J., Zhang S., Zhang B., Burns A. (2019). Physical processes driving the response of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res. Space Phys. 124(4), 2978-2991.
https://doi.org/10.1029/2018JA025479

37. Wang X., Li B., Zhao F., Luo X., Huang L., Feng P., Li X. (2021). Variation of low-frequency time-code signal field strength during the annular solar eclipse on 21 June 2020: Observation and analysis. Sensors. 21(4), 1216.
https://doi.org/10.3390/s21041216

38. Wu C., Ridley A. J., Goncharenko L., Chen G. (2018). GITM-data comparisons of the depletion and enhancement during the 2017 solar eclipse. Geophys. Res. Lett. 45(8), 3319-3327.
https://doi.org/10.1002/2018GL077409

39. Zhang R., Le H., Li W., Ma H., Yang Y., Huang H., Li Q., Zhao X., Xie H., Sun W., Li G., Chen Y., Zhang H., Liu L. (2020). Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse. J. Geophys. Res. Space Phys. 125(12), e2020JA028450.
https://doi.org/10.1029/2020JA028450

40. Zhang S.-R., Erickson P. J., Goncharenko L. P., Coster A. J., Rideout W., Vierinen J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett. 44(24). 12067-12073.
https://doi.org/10.1002/2017GL076054

41. Zhang S.-R., Erickson P. J., Vierinen J., Aa E., Rideout W., Coster A. J., Goncharenko L. P. (2021). Conjugate ionospheric perturbation during the 2017 solar eclipse. J. Geophys. Res. Space Phys. 126(2), e2020JA028531. .
https://doi.org/10.1029/2020JA028531