Spectral manifestations of strong and super-strong magnetic fields in an active prominence on July 24, 1999

Heading: 
Yakovkin, II, Hromov, MA, Lozitsky, VG
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(5):65-76
https://doi.org/10.15407/kfnt2023.05.065
Language: Ukrainian
Abstract: 

We present the results of the study of the magnetic field in the active prominence on July 24, 1999 for the moment 07:00 UT, using the observational material obtained on the Echelle spectrograph of the horizontal solar telescope of the Astronomical Observatory of Taras Shevchenko Kyiv National University. Our analysis is based on the study of I ± V profiles of the Hα line, which were related to heights in the range of 11...20 Mm. It was found that the bisectors of the I ± V profiles are non-parallel to each other in majority of places of this prominence. This indicates the inhomogeneity of the magnetic field: with a uniform magnetic field, the named bisectors should be parallel. Moreover, the maximum splitting of bisectors is observed not only in the core of the line (which was noted earlier by other authors), but also in its far wings, at distances of 0.15...0.25 nm from the line center. The specified maximum of splitting corresponds to magnetic field of about 3000 G, but this value should be considered only as a lower estimate of the true local magnetic fields. In particular, the second maximum of bisector splitting may indicate that the actual value of Zeeman splitting in small-scale structures with a small filling factor reaches the above value of 0.15...0.25 nm which corresponds to the field strength of almost 100 kG. From our study it follows that evidences on such extremely magnetic fields may not actually be a rare phenomenon, but a rather common one, which, however, can be recorded only under certain favorable observational conditions.

Keywords: magnetic fields, prominences, solar activity, spectro-polarimetry, Sun, super-strong fields
References: 

1. Brosius J. W., White S. M. (2006) Radio measurements of the height of strong coronal magnetic fields above sunspots at the solar limb. Astrophys. J. 641, L69-L72. https://doi.org/10.1086/503774

2. Chen B., Shen C., Gary D. E. Reeves K. K., et al. (2020) Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nature Astron. 4. 1140-1147. https://doi.org/10.1038/s41550-020-1147-7

3. Durn C. J. S., Andreas Lagg A., Solanki S. K., Van Noort M. (2020) Detection of the strongest magnetic field in a sunspot light bridge. Astrophys. J. 895(129). 18. https://doi.org/10.3847/1538-4357/ab83f1

4. Harvey J. W. (2012) Chromospheric magnetic field measurements in a flare and an active region filament. Solar Phys. 280(1). 69-81. https://doi.org/10.1007/s11207-012-0067-9

5. Kleint L. (2017) First detection of chromospheric magnetic field changes during an X1-Flare. Astrophys. J. 834. id. 26, 10. https://doi.org/10.3847/1538-4357/834/1/26

6. Koza J., Kuridze D., Heinzel P., et al. (2019) Spectral diagnostics of cool flare loops observed by the SST. I. Inversion of the Ca II 8542  and H lines. Astrophys. J. 885, id. 154. 13. https://doi.org/10.3847/1538-4357/ab4426

7. Kuckein C., Centeno R., Martnez Pillet V., et al. (2009) Magnetic field strength of active region filaments. Astron. and Astrophys. 501. 1113-1121. https://doi.org/10.1051/0004-6361/200911800

8. Kuridze D., Mathioudakis M., Morgan H., Oliver R., et al. (2019) Mapping the magnetic field of flare coronal loops. Astrophys. J. 874. id. 126, 12. https://doi.org/10.3847/1538-4357/ab08e9

9. Libbrecht T., de la Cruz Rodriguez J., Danilovic S., Leenaarts J., et al. (2019) Chromospheric condensations and magnetic field in a C3.6-class flare studied via He I D3 spectro-polarimetry. Astron. and Astrophys. 621, id. A35, 21. https://doi.org/10.1051/0004-6361/201833610

10. Lozitsky V. G. (1980). On the calibration of magnetograph measurements taking into account the spatially unresolved inhomogeneties. Physica Solariterris, Potsdam. 14. 88-94.

11. Lozitsky V. G. (1993) Superstrong magnetic fields in the solar atmosphere. Kinematics and Phys. Celestial Bodies. 9. 18-25.

12. Lozitsky V. G. (2009) Observational evidences to the 105 G magnetic fields in active regions on the Sun. J. Phys. Studies. 13(2), 2903-1-2903-8. https://doi.org/10.30970/jps.

13.2903 13. Lozitsky V. G. (2015) Small-scale magnetic field diagnostics in solar flares using bisectors of I  V profiles. Adv. Space Res. 55. 958-967. https://doi.org/10.1016/j.asr.2014.09.028

14. Lozitsky V. G. (2016) Indications of 8-kilogauss magnetic field existence in the sunspot umbra. Adv. Space Res. 57. 398-407. https://doi.org/10.1016/j.asr.2015.08.032

15. Lozitsky V. G., Botygina O. A. (2012) Comparison of the magnetic fields in active prominences measured from HeI D3 and H lines. Astron. Lett. 38(6). 380-387. https://doi.org/10.1134/S1063773712050039

16. Lozitsky V., Maslyukh V., Botygina O. (2015) Estimates of local magnetic fields in prominences with a large optical thickness in emissive elements. Bull. Kyiv Nat. Univ. Astron. 52. 7-11. https://doi.org/10.17721/BTSNUA.2015.52.7-11

17. Lozitsky V., Yurchyshyn V., Ahn K., Wang H. (2022) Observations of extremely strong magnetic fields in active region NOAA 12673 using GST magnetic field measurement. Astrophys. J. 928(1), id.41, 7. https://doi.org/10.3847/1538-4357/ac5518

18. Sasikumar Raja K., Venkata Suresh, Singh Jagdev B. Raghavendra Prasad. (2022) Solar coronal magnetic fields and sensitivity requirements for spectropolarimetry channel of VELC onboard Aditya-L1. Adv. Space Res. 69. 814-822. https://doi.org/10.1016/j.asr.2021.10.053

19. Solanki S. K. (2003) Sunspots: An overview. Astron. and Astrophys. Rev. 11. 153-286. https://doi.org/10.1007/s00159-003-0018-4

20. Solov'ev A. A. (2022) Force-free magnetic flux ropes: string confinement of super-strong magnetic fields and flare energy release. Mon. Notic. Roy. Astron. Soc. 515. 4981-4989. https://doi.org/10.1093/mnras/stac1818

21. Solov'ev A. A., Lozitskii V. G. (1986) Force-free model of fine-structure magnetic elements. Kinematika i Fizika Nebesnykh Tel. 2. 80-84.

22. Stenflo J. O. (2011) Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun. Astron. and Astrophys. 529, id. A42, 20. https://doi.org/10.1051/0004-6361/201016275

23. Wei Yudian, Chen Bin, Yu Sijie, Wang Haimin, Jing Ju, Gary Dale E. (2021) Coronal magnetic field measurements along a partially erupting filament in a solar flare. Astrophys. J. 923(213). 11. https://doi.org/10.3847/1538-4357/ac2f99

24. Xu Z., Lagg A., Solanki S., Liu Y. (2012) Magnetic fields of an active region filament from full stokes analysis of Si I 1082.7 nm and He I 1083.0 nm. Astrophys. J. 749(2), 138. 11. https://doi.org/10.1088/0004-637X/749/2/138

25. Yakovkin I. I., Lozitsky V. G. (2022) Signatures of superstrong magnetic fields in a limb solar flare from observations of the H line. Adv. Space Res. 69(12). 4408-4418. https://doi.org/10.1016/j.asr.2022.04.012

26. Yakovkin I. I., Lozitsky V. G. (2023) Search for superstrong magnetic fields in active processes on the Sun using spectro-polarimetry within 15 angstroms around the D3 line. Mon. Notic. Roy. Astron. Soc. (June 20). 11 p. https://doi.org/10.1093/mnras/stad1816

27. Yakovkin I. I., Veronig A. M., Lozitsky V. G. (2021) Magnetic field measurements in a limb solar flare by hydrogen, helium and ionized calcium lines. Adv. Space Res. 68. 1507-1518. https://doi.org/10.1016/j.asr.2021.03.036