About determination of the vertical structure of aerosol component in the atmosphere of Saturn
1Ovsak, AS 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2018, 34(1):57-80 |
https://doi.org/10.15407/kfnt2018.01.057 |
Start Page: Dynamics and Physics of Solar System Bodies |
Language: Russian |
Abstract: A changes of the behavior with depth of the aerosol and the gas scattering components of the effective optical depth in the profiles of 887, 864, 842, 727 and 619 nm spectral absorption bands of atmospheric methane has been received. A model of homogeneous spherical aerosol particles was in use. The values of particles parameters are near to real values for altitude levels with pressure range of 0.18...1.5 bar. A presence of the stratospheric aerosol has been detected at 0.054 bar and at higher altitude levels. At least seven features are defined in the vertical structure of cloud cover in the upper part of the atmosphere of Saturn. The altitude position of the highest relative aerosol concentration has been determined at a level with pressure of about 0.3 bar, at a relative methane concentration of 0.0021, and about 0.12 bar at 0.0533. It was found that at the altitude levels with pressure > 0.44 bar there was a presence of a cloud that is stretched along a height and without selected aerosol layers inside. The signs of possible changes of aerosol particles parameters was been detected in the deep levels from the pressure value of 1.5 bar and more. |
Keywords: aerosol, atmosphere, Saturn, vertical structure |
1.V. V. Avramchuk, L. A. Bugaenko, A. V. Morozhenko, and E. G. Yanovitskij, “The results of studies of Jupiter performed at the Main Astronomical Observatory of Ukrainian SSR Academy of Sciences,” Astrom. Astrofiz., No. 31, 54–68 (1977).
2.O. I. Bugaenko, “Generalized spherical functions in the Mi problem,” Fiz. Atmos. Okeana 12, 603–611 (1976).
3.O. I. Bugaenko, Zh. M. Dlugach, A. V. Morozhenko, and E. G. Yanovitskij, “On optical properties of the cloud layer of Saturn in the visible region of the spectrum,” Astron. Vestn. 9 (1), 13–21 (1975).
4.K. Yu. Ibragimov, Numerical Modeling of Stratified Cloudiness in Atmospheres of Gas Giants (Nauka, Alma-Ata, 1990).
5.A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).
6.O. V. Morozhenko, A. V. Morozhenko, Methods and Results of Remote Probing of Planetary Atmospheres (Naukova Dumka, Kyiv, 2004) [in Ukrainian].
7.S. K. Atreya, M. H. Wong, T. C. Owen, P. R. Mahaffy, H. B. Niemann, I. de Pater, P. Drossart, and Th. Encrenaz, “A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin,” Planet. Space Sci. 47, 1243–1262 (1999).
https://doi.org/10.1016/S0032-0633(99)00047-1
8.S. K. Atreya and A.-S. Wong, “Coupled clouds and chemistry of the giant planets — A case for multiprobes,” Space Sci. Rev. 116, 121–136 (2005).
https://doi.org/10.1007/s11214-005-1951-5
9.D. Banfield, P. J. Gierasch, M. Bell, E. Ustinov, A. P. Ingersoll, A. R. Vasavada, R. A. West, and M. J. S. Belton, “Jupiter’s cloud structure from Galileo imaging data,” Icarus 135, 230–250 (1998).
https://doi.org/10.1006/icar.1998.5985
10.O. I. Bugaenko and A. V. Morozhenko, “Physical characteristics of the upper layers of Saturn’s atmosphere,” Adv. Space Res. 1 (8), 183–186 (1981).
https://doi.org/10.1016/0273-1177(81)90500-7
11.J. W. Chamberlain, “The atmosphere of Venus near her cloud tops,” Astrophys. J. 141, 1184–1205 (1965).
https://doi.org/10.1086/148207
12.R. Courtin, D. Gautier, A. Marten, B. Bezard, and R. Hanel, “The composition of Saturn’s atmosphere at northern temperate latitudes from Voyager IRIS spectra — NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio,” Astrophys. J. 287, 899–916 (1984).
https://doi.org/10.1086/162748
13.Z. M. Dlugach and M. I. Mishchenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Sol. Syst. Res. 39, 102–111 (2005).
https://doi.org/10.1007/s11208-005-0026-1
14.Z. M. Dlugach and M. I. Mishchenko, “Photopolarimetry of planetary atmospheres: What observational data are essential for a unique retrieval of aerosol microphysics?,” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).
https://doi.org/10.1111/j.1365-2966.2007.12679.x
15.Z. M. Dlugach and E. G. Yanovitskij, “The optical properties of Venus and the Jovian planets. II. Methods and results of calculations of the intensity of radiation diffusely reflected from semi-infinite homogeneous atmospheres,” Icarus 22, 66–81 (1974).
https://doi.org/10.1016/0019-1035(74)90167-5
16.L. N. Fletcher, K. H. Baines, T. W. Momary, A. P. Showman, P. G. J. Irwin, G. S. Orton, M. Roos-Serote, and C. Merlet, “Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy,” Icarus 214, 510–533 (2011).
https://doi.org/10.1016/j.icarus.2011.06.006
17.L. N. Fletcher, G. S. Orton, N. A. Teanby, P. G. J. Irwin, and G. L. Bjoraker, “Methane and its isotopologues on Saturn from Cassini/CIRS observations,” Icarus 199, 351–167 (2009).
https://doi.org/10.1016/j.icarus.2008.09.019
18.L. P. Giver, “Intensity measurements of the CH4 bands in the region 4350 Å to 10,600 Å,” J. Quant. Spectrosc. Radiat. Transfer 19, 311–322 (1978).
https://doi.org/10.1016/0022-4073(78)90064-X
19.E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum,” Icarus 111, 174–192 (1994).
https://doi.org/10.1006/icar.1994.1139
20.K. Kawata, “Circular polarization of sunlight reflected by planetary atmospheres,” Icarus 33, 217–232 (1978).
https://doi.org/10.1016/0019-1035(78)90035-0
21.J. S. Lewis, “The clouds of Jupiter and the NH3—H2O and NH3—H2S systems,” Icarus 10, 365–378 (1969).
https://doi.org/10.1016/0019-1035(69)90091-8
22.W. Macy, Jr., “An analysis of Saturn’s methane 3ν3 band profiles in terms of an inhomogeneous atmosphere,” Icarus 29, 49–56 (1976).
https://doi.org/10.1016/0019-1035(76)90101-9
23.K. I. Matcheva, B. J. Conrath, P. J. Gierasch, and F. M. Flasar, “The cloud structure of the Jovian atmosphere as seen by the Cassini/CIRS experiment,” Icarus 179, 432–448 (2005).
https://doi.org/10.1016/j.icarus.2005.06.020
24.I. Mendikoa, S. Pérez-Hoyos, and A. Sánchez-Lavega, “Probing clouds in planets with a simple radiative transfer model: The Jupiter case,” Eur. J. Phys. 33, 1611–1624 (2012).
https://doi.org/10.1088/0143-0807/33/6/1611
25.S. Merlet, Ph.D. Thesis (Univ. of Oxford, Oxford, 2013). https://www2.physics.ox.ac.uk/sites/default/files/2012-03-08/2_merlet_pd....
26.M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res.: Atmos. 102, 16831–16847 (1997).
https://doi.org/10.1029/96JD02110
27.M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).
28.A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).
https://doi.org/10.3103/S0884591307060025
29.A. V. Morozhenko, “Ammonia in the atmospheres of Jupiter and Saturn: Absorption coefficients,” Kinematics Phys. Celestial Bodies 25, 182–188 (2009).
https://doi.org/10.3103/S0884591309040023
30.A. V. Morozhenko, A. S. Ovsak, and P. P. Korsun, “The vertical structure of Jupiter’s cloud layer before and after the impact of comet Shoemaker-Levy 9,” in Proc. European SL-9/Jupiter Workshop, Garching, February 13–15, 1995 (European Southern Observatory, Garching, 1995), p. 267.
31.A. V. Morozhenko and A. S. Ovsak, “Dependence of the aerosol component of optical thickness and the relative concentration of methane on depth in atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 25, 173–181 (2009).
https://doi.org/10.3103/S0884591309040011
32.A. V. Morozhenko and A. S. Ovsak, “On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets,” Kinematics Phys. Celestial Bodies 31, 225–231 (2015).
https://doi.org/10.3103/S0884591315050074
33.A. V. Morozhenko and A. S. Ovsak, “On the possibility of determining the imaginary part of the complex refractive index of aerosol particles in an individual altitudinal cloud layer of Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 32, 294–298 (2016).
https://doi.org/10.3103/S0884591316060064
34.A. V. Morozhenko, A. S. Ovsak, A. P. Vid’machenko, V. G. Tejfel, and P. G. Lysenko, “Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter’s disc,” Kinematics Phys. Celestial Bodies 32, 30–37 (2016).
https://doi.org/10.3103/S0884591316010062
35.O. J. Mousis, D. H. Atkinson, and the Hera Team, “Hera Saturn Entry Probe Mission,” A Proposal in Response to ESA Call for a Medium Size Mission Opportunity in ESA’s Science Programme for Launch in 2019–2030 (M5), Oct. 5, 2016.
https://arxiv.org/abs/1510.07685.
36.O. Muñoz, F. Moreno, A. Molina, et al., “Study of the vertical structure of Saturn’s atmosphere using HST/WFPC2 images,” Icarus 169, 413–428 (2004).
https://doi.org/10.1016/j.icarus.2003.12.018
37.A. S. Ovsak, “Calculation of effective optical depth of absorption line formation in homogeneous semi-infinite planetary atmosphere during anisotropic scattering,” Kinematics Phys. Celestial Bodies 26, 86–88 (2010).
https://doi.org/10.3103/S0884591310020066
38.A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).
https://doi.org/10.3103/S0884591313060056
39.A. S. Ovsak, “Changes in the characteristics of the upper layers of the Jovian atmosphere from the data on the integral observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 25–33 (2015).
https://doi.org/10.3103/S0884591315010067
40.A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).
https://doi.org/10.3103/S0884591315040066
41.A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Sol. Syst. Res. 49, 43–50 (2015).
https://doi.org/10.1134/S0038094615010050
42.A. S. Ovsak, V. G. Teifel, and P. G. Lysenko, “Vertical structure of the volume scattering coefficient of aerosol in latitude belts of Jupiter’s disk,” Kinematics Phys. Celestial Bodies 32, 181–188 (2016).
https://doi.org/10.3103/S0884591316040061
43.A. S. Ovsak, V. G. Tejfel, A. P. Vid’machenko, P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 119–130 (2015).
https://doi.org/10.3103/S0884591315030058
44.O. Ovsak and N. Kostogryz, “The method of computer analysis a vertical structure of aerosol component in the atmospheres of the giant planets,” in Proc. AGU Chapman Conf. on Crossing Boundaries in Planetary Atmospheres: From Earth to Exoplanets, Annapolis, MD, June 24–28, 2013 (Am. Geophys. Union, 2013), abstract W3.
45.S. Pérez-Hoyos, A. Sanchez-Lavega, R. G. French, and J. F. Rojas, “Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003),” Icarus 176, 155–174 (2005).
https://doi.org/10.1016/j.icarus.2005.01.014
46.S. Pérez-Hoyos, A. Sánchez-Lavega, G. Orion, R. Hueso, et al., “The 2007 Jupiter’s North temperate belt disturbance. II. Vertical cloud structure models,” Bull. Am. Astron. Soc. 39, 443 (2007).
47.V. Ragent, D. S. Colburn, K. A. Rages, et al., “The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment,” J. Geophys. Res.: Planets 103, 22891–22909 (1998).
https://doi.org/10.1029/98JE00353
48.A. Sánchez-Lavega, R. Hueso, and S. Pérez-Hoyos, “The three-dimensional structure of Saturn’s equatorial jet at cloud level,” Icarus 187, 510–519 (2007).
https://doi.org/10.1016/j.icarus.2006.10.022
49.R. Santer and A. Dollfus, “Optical reflectance polarimetry of Saturn’s globe and rings: IV. Aerosols in the upper atmosphere of Saturn,” Icarus 48, 496–518 (1981).
https://doi.org/10.1016/0019-1035(81)90060-9
50.T. Sato, Y. Kasaba, Y. Takahashi, et al., “Latitudinal variations in vertical cloud structure of Jupiter as determined by ground-based observation with multispectral imaging,” in Proc. American Geophysical Union 2008 Fall Meeting, San Francisco, CA, 2008 (American Geophysical Union, 2008), abstract no. P11B-1271.
51.L. A. Sromovsky, K. H. Baines, and P. M. Fry, “Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra,” Icarus 226, 402–418 (2013).
https://doi.org/10.1016/j.icarus.2013.05.043
52.D. Stam, D. Banfield, P. J. Gierasch, and P. D. Nicholson, “Near-IR spectrophotometry of saturnian aerosols — Meridional and vertical distribution,” Icarus 152, 407–422 (2001).
https://doi.org/10.1006/icar.2001.6641
53.T. Temma, N. J. Chanover, A. A. Simon-Miller, D. A. Glenar, J. J. Hillman, and D. M. Kuehn, “Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging,” Icarus 175, 464–489 (2005).
https://doi.org/10.1016/j.icarus.2004.11.006
54.S. J. Weidenschilling and L. S. Lewis, “Atmospheric and cloud structures of the Jovian planets,” Icarus 20, 465–476 (1973).
https://doi.org/10.1016/0019-1035(73)90019-5
55.R. A. West, K. H. Baines, A. J. Friedson, et al., “Jovian clouds and haze,” in Jupiter. The Planet, Satellites and Magnetosphere, Ed. by F. Bagenal, T. Dowling, and W. B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), pp. 78–104.
56.R. A. West, K. H. Baines, E. Karkoschka, and A. Sánchez-Lavega, “Clouds and aerosols in Saturn’s atmosphere,” in Saturn from Cassini-Huygens, Ed. by M. Dougherty, (Springer-Verlag, Dordrecht, 2009), pp. 161–179.
https://doi.org/10.1007/978-1-4020-9217-6_7
57.E. G. Yanovitskij and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematics Phys. Celestial Bodies 13 (4), 1–19 (1997).