Some changes of upper layer characteristics for Jovian atmosphere from measurements of the planet's whole disk

1Ovsak, AS
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2015, 31(1):40-51
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

Some changes in the behavior with depth for the optical thicknesses of the aerosol and gas scattering components in profiles of λλ 887, 864, 842, 727, and 619 nm spectral absorption bands of atmospheric methane were studied. We examined the spectrophotometric data obtained from the measurements of the Jovian whole disk during 1993 and 1995. The aerosol scattering component increased by 0—5% (depending on the depth level) in 1995 as compared with 1993. Three different aerosol layers with gaps at the atmospheric levels near 0.38 and 0.52 bars were detected from the measurement data obtained in 1993. Some evidence of new aerosol layer formation at the atmospheric level with pressure from 15 to 18 bars in 1995 was revealed.

Keywords: aerosol, integrated disk, Jupiter
References: 

1.M. S. Dement’ev and A. V. Morozhenko, “Zones and belts of the Jupiter’s disk. Diversity in the vertical structure of cloud layers,” Astron. Vestn. 24, 275–287 (1990).

2.K. Yu. Ibragimov, Numerical Modeling of Stratiform Clouds in the Atmospheres of the Giant Planets (Nauka, Alma-Ata, 1990) [in Russian].

3.A. V. Morozhenko, “On the structure of Jupiter’s cloud layer,” Pis’ma Astron. Zh. 10, 775–779 (1984).

4.A. V. Morozhenko, “Vertical structure of Jupiter’s latitudinal cloud layers,” Astron. Vestn. 24(1), 64–76 (1985).

5.A. V. Morozhenko, “Problems in the study of the vertical structure of the atmospheres of the giant planets,” Kinematika Fiz. Nebesnykh Tel 9(6), 3–26 (1993).

6.A. V. Morozhenko, “Redefining the values of monochromatic absorption coefficients of methane, considering thermal conditions of the giant planets,” Kinematika Fiz. Nebesnykh Tel 19, 483–500 (2003).

7.A. V. Morozhenko and A. S. Ovsak, “Dependence on the depth of the aerosol component of optical thickness and the relative concentration of methane in atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 25, 173–181 (2009).
https://doi.org/10.3103/S0884591309040011

8.A. V. Morozhenko, A. S. Ovsak and P. P. Korsun, “Vertical structure of Jupiter’s cloud layer before and after collision with the comet Shoemaker-Levy 9,” Kinematika Fiz. Nebesnykh Tel 11(4), 3–20 (1995).

9.A. S. Ovsak, “Upgraded technique to analyze of the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).
https://doi.org/10.3103/S0884591313060056

10.E. G. Yanovitskii and A. S. Ovsak, “Effective optical depth of forming of absorption line in the semi-infinite planetary athmosphere,” Kinematika Fiz. Nebesnykh Tel 13(4), 3–21 (1997).

11.S. K. Atreya and A. S. Wong, “Coupled clouds and chemistry of the giant planets — a case for multiprobes,” Space Sci. Rev. 116(1), 121–136 (2005).
https://doi.org/10.1007/s11214-005-1951-5

12.L. Axel, “Inhomogeneos models of the atmosphere of Jupiter,” Astrophys. J. 173, 451–468 (1972).
https://doi.org/10.1086/151437

13.C. J. Baines, “Contribution to the study of Jupiter’s atmosphere,” Icarus 15, 58–67 (1971).
https://doi.org/10.1016/0019-1035(71)90034-0

14.D. Banfield, P. J. Gierasch, M. Bell, et al., “Jupiter’s cloud structure from Galileo imaging data,” Icarus 135, 230–250 (1998).
https://doi.org/10.1006/icar.1998.5985

15.J. W. Chamberlain, “The atmosphere of Venus near cloud top,” Astrophys. J. 141, 1184–1205 (1965).
https://doi.org/10.1086/148207

16.R. E. Danielson and R. G. Tomasko, “A two-layer model of the Jovian clouds,” J. Atmos. Sci. 26, 889–897 (1969).
https://doi.org/10.1175/1520-0469(1969)026<0889:ATLMOT>2.0.CO;2

17.L. P. Giver, “Intensity measurements of the CH4 bands in the region of 4350 to 10600 A,” J. Quant. Spectrosc. and Radiat. Transfer 19, 311–322 (1978).
https://doi.org/10.1016/0022-4073(78)90064-X

18.P. G. J. Irwin, K. Sihra, N. Bowles, et al., “Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm−1 and implications for vertical cloud structure,” Icarus 176, 255–271 (2005).
https://doi.org/10.1016/j.icarus.2005.02.004

19.E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).
https://doi.org/10.1006/icar.1994.1139

20.E. Karkoschka, “Methane, ammonia, and temperature measurements of the Jovian planets and Titan from CCD-spectrophotometry,” Icarus 133, 134–146 (1998).
https://doi.org/10.1006/icar.1998.5913

21.J. S. Lewis, “The clouds of the Jupiter’s and the NH3-H2O and NH3-H2S systems,” Icarus 10, 365–378 (1969).
https://doi.org/10.1016/0019-1035(69)90091-8

22.W. Macy, “An analysis of Saturn’s methane 3v3 bond profiles in the terms of an inhomogeneous atmosphere,” Icarus 29, 49–56 (1976).
https://doi.org/10.1016/0019-1035(76)90101-9

23.K. I. Matcheva, B. J. Conrath, P. J. Gierasch, and F. M. Flasar, “The clouds on Jupiter — the Cassini/CIRS perspective,” Bull. Am. Astron. Soc. 36, 1133 (2004).

24.K. I. Matcheva, B. J. Conrath, P. J. Gierasch, and F. M. Flasar, “The cloud structure of the Jovian atmosphere as seen by the Caccini/CIRS experiment,” Icarus 179, 432–448 (2005).
https://doi.org/10.1016/j.icarus.2005.06.020

25.M. I. Mischenko, “Physical properties of the upper tropospherical aerosols in the equatorial region of Jupiter,” Icarus 84, 296–304 (1990).
https://doi.org/10.1016/0019-1035(90)90039-C

26.A. V. Morozhenko and E. G. Yanovitskij, “The optical properties of Venus and Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18, 583–592 (1973).
https://doi.org/10.1016/0019-1035(73)90060-2

27.H. B. Niemann, S. K. Atreya, G. R. Carignan, et al., “The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer,” J. Geophys. Res. 103, 22831–22854 (1998).
https://doi.org/10.1029/98JE01050

28.O. Ovsak and N. Kostogryz, “The method of computer analysis a vertical structure of aerosole component in the atmospheres of the giant planets,” in Proc. AGU Chapman Conf. on Crossing Boundaries in Planetary Atmospheres: From Earth to Exoplanets, Annapolis, Maryland, June 24–28, 2013 (Am. Geophys. Union, 2013), ID: 1677256.

29.S. Perez-Hoyos, A. Sanchez-Lavega, G. Orton, et al., “The 2007 Jupiter’s north temperate belt disturbance. II. Vertical cloud structure models”, Bull. Am. Astron. Soc. 39, 443 (2007).

30.B. Ragent, D. S. Colburn, K. A. Rages, et al., “The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment”, J. Geophys. Res. 103, 22891–22909 (1998).
https://doi.org/10.1029/98JE00353

31.T. Sato, Y. Kasaba, Y. Takahashi, et al., “Latitudinal variations in vertical cloud structure of Jupiter as determined by ground-based observation with multispectral imaging,” in Proc. AGU Fall Meeting, San Francisco, 2008 (Am. Geophys. Union, 2008), Abstract No. P11B-1271.

32.T. Sato, T. Satoh, and Y. Kasaba, “Scattering properties of Jovian tropospheric cloud particles inferred from Cassini/ISS: Mie scattering phase function and particle size in South Tropical Zone III,” in Proc. AGU Fall Meeting, San Francisco, 2010 (Am. Geophys. Union, 2010), Abstract No. P31A-1518.

33.C. R. Stoker and Ch. W. Hord, “Vertical cloud structure of Jupiter’s equatorial plumes,” Icarus 64, 557–575 (1985).
https://doi.org/10.1016/0019-1035(85)90076-4

34.V. G. Tejfel and G. A. Kharitonova, “Probable signs of the vertical inhomogeneity of Jovian cloud layer,” in Proc. Eur. Planetary Science Congress, London, Sept. 8–13, 2013, http://meetings.copernicus.org/epsc2013, id. EPSC2013-352.

35.S. J. Weidenscilling and L. S. Lewis, “Atmospheric and cloud structures of the Jovian planets,” Icarus 20, 465–476 (1973).
https://doi.org/10.1016/0019-1035(73)90019-5

36.R. A. West and M. G. Tomasko, “Spatially resolved methane band photometry of Jupiter III. Cloud vertical structures for several axisymmetric bands and the Great Red Spot,” Icarus 41, 278–292 (1980).
https://doi.org/10.1016/0019-1035(80)90011-1