Shadow mechanism and opposition effect of light for atmosphereless celestial bodies

1Morozhenko, OV, 1Vidmachenko, AP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(5):36-48
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

In the modified Irwin — Yanovitskij — Hapke shadow model of formation of opposition brightness effect the relationship between the single scattering albedo ωand transparency coefficient of particles κ is used in the form κ = (1 - ω) ;)n. This reduces the number of unknowns to two parameters (the packing density of particles g and ю) and the scattering function χ(α). Our analysis of spectrophotometric measurements of the Moon and Mars shows that a good agreement between the observed data on opposition effect and some change of color index with the phase angle а for the Moon and Mars can be obtained for n = 0.25, g = 0.4 (the Moon) and 0.6 (Mars). Applying this method to some of asteroid types also gave satisfactory agreement: the E-type (g = 0.6, ω = 0.6, Ag = 0.21, q = 0.83 or g = 0.3, ю = 0.4, Ag = 0.15, q = 0.71) for the Martian indicatrix; M-type (g = 0.4, ω ≤0.1, Ag ≤ 0.075, q g ≤ 0.075, q = 0.43) for a modified lunar indicatrix. Polarization measurements of T. Gehrels and others revealed that when а = 1.6° for the bright feature Copernicus (L = -20°08', φ = +10°11') of the lunar surface the plane polarization position in the G, I filters differed by 22° and 12° from one typical for the negative branch, whereas in the U filter and for the dark feature Plato (L = -10°32', φ= +51°25') the deviation was within the error limits (±3°). It is probable that this fact is a result of the coherent mechanism of thepolariza- tion peak forma tion.

Keywords: atmosphereless celestial bodies, opposition effect of light
References: 

1.A. V. Morozhenko, “Optical Parameters of the Atmosphere and Surface of Mars. III. Surface,” Astron. Vestn. 9(3), 137–143 (1975).

2.A. V. Morozhenko, “Coherent Scattering Effects in the Polarizing Properties of the Galilean Satellites of Jupiter,” Kinematics Phys. Celest. Bodies 24(2), 112–113 (2008).
https://doi.org/10.3103/S0884591308020074

3.A. V. Morozhenko, A. A. Rubashevskii, and E. G. Yanovitskii, “The Results of Statistical Processing of Observations of the Phase Dependence of the Integral Brightness Mars,” Astron. Zh. 47(5), 1073–1082 (1970).

4.A. V. Morozhenko and E. G. Yanovitskii, “Optical Properties of the Surface Layer of the Moon,” Astron. Zh. 48(1), 172–183 (1971) [in Russian].

5.A. V. Morozhenko and E. G. Yanovitskii, “Optical Model of the Martian Surface in the Visible Spectral Range,” Astron. Zh. 48(4), 795–809 (1971) [in Russian].

6.F. A. Tupieva, “Comparative Analysis of the Phase Dependences of Brightness of Asteroids,” Kinematics Phys. Celest. Bodies 7(3), 39–38 (1991).

7.E. Bowell, B. Hapke, D. Domingue, et al., “Applications of photometric models to asteroids,” in Asteroids II, Ed. by R. P. Binzel, T. Gehrels, and M. S. Matthews (Uniiv. Arizona Press, Tucson, 1989), pp. 524–556.

8.B. J. Buratti, J. K. Hillier, and M. Wang, “The Lunar Opposition Surge: Observations by Clementine,” Icarus 124(2), 490–499 (1996).
https://doi.org/10.1006/icar.1996.0225

9.G. de Vaucouleurs, “Geometric and Photometric Parameters of the Terrestrial Planets,” Icarus 3(3), 187–235 (1964).
https://doi.org/10.1016/0019-1035(64)90018-1

10.T. Gehrels, D. L. Coffeen, and D. Owings, “Wavelength Dependence of Polarization. III. The Lunar Surface,” Astron. J. 69(10), 826–852 (1964).
https://doi.org/10.1086/109359

11.B. Hapke, “A Theoretical Function for the Lunar Surface,” J. Geophys. Res. 68(15), 4571–4586 (1963).
https://doi.org/10.1029/JZ068i015p04571

12.B. Hapke, “An Improved Theoretical Lunar Photometric Function,” Astron. J. 71(5), 333–339 (1966).
https://doi.org/10.1086/109924

13.B. Hapke, “Coherent Backscatter and the Radar Characteristics of Outer Planet Satellites,” Icarus 88(2), 407–417 (1990).
https://doi.org/10.1016/0019-1035(90)90091-M

14.B. Hapke, R. M. Nelson, and W. Smythe, “The Opposition Effect of the Moon: The Contribution of Coherent Backscatter,” Scient 260(5107), 509–511 (1993).

15.P. Hellenstein, J. Veverka, and J. Hillier, “The Lunar Opposition Effect: A Test of Alternative Models,” Jcarus 128(1), 2–14 (1997).

16.W. M. Irwine, “The Shadowing Effect in Diffuse Reflection,” J. Geophys. Res. 71(12), 2931–2937 (1966).
https://doi.org/10.1029/JZ071i012p02931

17.W. M. Irvine, Th. Simon, D. H. Menzel, et al., “Multicolor Photoelectric Photometry of the Brighter Planets. II. Observations from the Le Houga Observatory,” Astron. J. 73(4), 251–264 (1968).
https://doi.org/10.1086/110626

18.W. M. Irvine, Th. Simon, D. H. Menzel, et al., “Multicolor Photoelectric Photometry of the Brighter Planets. III. Observations from the Boyden Observatory,” Astron. J. 73(9), 807–828 (1968).
https://doi.org/10.1086/110702

19.L. D. Jaffe, “Surface Structure and Mechanical Properties of the Lunar Maria,” J. Geophys. Res. 72(6), 1727–1731 (1967).
https://doi.org/10.1029/JZ072i006p01727

20.L. D. Jaffe, “Surveyor 6 Lunar Mission,” J. Geophys. Res. 73(16), 5297–5300 (1968).
https://doi.org/10.1029/JB073i016p05297

21.Y. Kuga and A. Ishimaru, “Retroreflectance from a Dense Distribution of Spherical Particles,” J. Opt. Soc. Am. A1(7), 831–835 (1984).
https://doi.org/10.1364/JOSAA.1.000831

22.A. P. Lane and W. M. Irvine, “Monochromatic Phase Curves and Albedos for the Lunar Disk,” Astron. J. 78(3), 267–277 (1973).
https://doi.org/10.1086/111414

23.K. Lumme and E. Bowel, “Radiative Transfer in the Surface of Atmosphereless Bodies. I. Theory,” Astron. J. 86(11), 1694–1704 (1981).
https://doi.org/10.1086/113054

24.Th. B. McCord and J. A. Westphal, “Mars: Narrow-Band Photometry from 0.3 To 2.5 Microns of Surface Regions During the 1969 Apparition,” Astrophys. J. 168(1), 141–153 (1971).
https://doi.org/10.1086/151069

25.M. I. Mishchenko, “Polarization Characteristics of the Coherent Backscatter Opposition Effect,” Earth, Moon, Plantes 58(2), 127–144 (1992).
https://doi.org/10.1007/BF00054650

26.M. I. Mishchenko and J. M. Dlugach, “The Amplitude of the Opposition Effect Due To Weak Localization of Photons in Discrete Disordered Media,” Astrophys. Space Sci. 189(2), 151–154 (1992).
https://doi.org/10.1007/BF00642962

27.M. I. Mishchenko, J.-M. Luck, and T. M. Nieuwenhuizen, “Full Angular Profile of the Coherent Polarization Opposition Effect,” J. Opt. Soc. Am. 17(5), 88–891 (2000).

28.B. T. Leary, “The Opposition Effect of Mars,” Astrophys. J. 149(3), L147–L149 (1967).
https://doi.org/10.1086/180077

29.B. T. Leary and L. Jackell, “The 1969 Opposition Effect of Mars. Full Disk, Syrtis Mayor and Arabia,” Icarus 13(3), 437–448 (1979).
https://doi.org/10.1016/0019-1035(70)90091-6

30.H. A. Pohn, H. W. Radin, and R. L. Wildey, “The Moon’s Photometric Function Near Zero Phase Angle from Apollo 8 Photography,” Astrophys. J 157(3), L193–L195 (1969).
https://doi.org/10.1086/180417

31.G. Rougier, “Photometric Photoelectrique Global De La Lune,” Ann. Observ. Strasbourg 2, 3, 203–339 (1933).

32.V. K. Rozenbush, V. V. Avramchuk, A. E. Rosenbush, and M. I. Mishchenko, “Polarization Properties of the Galilean Satellites of Juputer: Observations and Preliminary Analysis,” Astrophys. J 487(1), 402–414 (1997).
https://doi.org/10.1086/304584

33.J. Stebbins, “The Light-Variations of the Satellites of Jupiter and Their Application To the Solar Constant,” Lick Observ. Bull 13(1), 1–11 (1927).

34.J. Stebbins and T. S. Jacobsen, “Further Photometric Measures of Jupiters’S Satellites and Uranus, with Tests for the Solar Constant,” Lick Observ. Bull 13(2), 180–195 (1928).

35.Th. E. Thorpe, “Mariner 9 Photometric Observations of Mars from November 1971 Through March 1972,” Icarus 20(4), 482–489 (1973).
https://doi.org/10.1016/0019-1035(73)90021-3

36.Th. E. Thorpe, “Viking Orbiter Photometric Observations of the Mars Phase Function July Through November 1976,” J. Geophys. Res. 82(28), 4161–4165 (1977).
https://doi.org/10.1029/JS082i028p04161

37.Th. E. Thorpe, “The Mars Opposition Effect at 20° N Latitude and 20° W Longitude,” Icarus 37(2), 389–397 (1979).
https://doi.org/10.1016/0019-1035(79)90003-4