Correlation of longitudinal currents with Alfven waves generation at the solar atmosphere

Heading: 
1Malovichko, PP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2007, 23(5):259-265
https://doi.org/10.3103/s0884591307050017
Language: Russian
Abstract: 

The current instability of alfven waves in coronal loops is considered. It is shown, that such generation mechanism of Alfven waves is very effective and can lead to development of low-frequency perturbations even in the case of very small currents, that can promote reconnection of magnetic fields and development of a flash. The low-frequency turbulence, originating in this situation, can promote also to the processes of heating and acceleration of particles.

Keywords: Alfven waves, longitudinal currents, solar atmosphere
References: 
  1. Aleksandrov, A.F., Bogdankevich, L,S., and Rukhadze, A.P., Osnovy elektrodinamiki plazmy (Fundamentals of Plasma Electrodynamics), Moscow: Vysshaya Shkola, 1978.
  2. Voitenko, Yu.M., Kuts, S.V., Malovichko, P.P., and Yukhimuk, A.K., Kineticheskie svoistva al’venovskikh voln (Kinetic Properties of Alfvén Waves), Preprint of Inst. of Theoretical Physics, UkrSSR Acad. Sci., Kyiv, 1990, no. ITF-90-75R.
  3. Liperovskii, V.A. and Pudovkin, M.I., Anomal’noe soprotivlenie i dvoinye sloi v magnitosfernoi plazme (Anomalous Resistivity and Double Sheets in the Magnetospheric Plasma), Moscow: Nauka, 1983.
  4. Malovichko, P.P. and Yukhimuk, A.K., Current Instability and Generation of Alfvén Waves in Coronal Loops, Kinematika i Fizika Nebes. Tel, 1992, vol. 8, no. 1, pp. 20–23.
  5. Mikhailovskii, A.B., Teoriya plazmennykh neustoichivostei (Theory of Plasma Instabilities), Moscow: Atomizdat, 1970, vol. 1.
  6. Ibid., 1977, vol. 2.
  7. Obridko, V.N., Solnechnye pyatna i kompleksy aktivnosti (Sunspots and Activity Complexes), Moscow: Nauka, 1985.
  8. Priest, E.R., Solar Magnetohydrodynamics, Dordrecht: D. Reidel, 1982.
    https://doi.org/10.1007/978-94-009-7958-1
  9. Solar Flares, Itogi nauki i tekhniki. Astronomiya (Advances in Science and Technology. Astronomy), Shcherbina-Samoilova, I.S. (Ed.), Moscow: VINITI, 1987, vol. 34.
  10. Bogdan, T.J., Effect of Thermal Conduction on Acoustic Waves in Coronal Loops, Astrophys. J., 2006, vol. 643, no. 1, pp. 532–547.
    https://doi.org/10.1086/502622
  11. Charbonneau, P., McIntosh, S.W., Liu, H L., and Bogdan, T.J., Avalanche Models for Solar Flares (Invited Review), Solar. Phys., 2001, vol. 203, no. 2, pp. 321–353.
    https://doi.org/10.1023/A:1013301521745
  12. Cranmer, S.R. and van Ballegooijen, A.A., Alfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating, Astrophys. J., 2003, vol. 594, no. 1, pp. 573–591.
    https://doi.org/10.1086/376777
  13. Gerrard, C.L. and Hood, A.W., Current Build-up as a Result of the Kink Instability in a Loop, Solar. Phys., 2004, vol. 223, no. 1–2, pp. 143–154.
    https://doi.org/10.1007/s11207-004-3154-8
  14. Hesse, M., Forbes, T.G., and Birn, J., On the Relation between Reconnected Magnetic Flux and Parallel Electric Fields in the Solar Corona, Astrophys. J., 2005, vol. 631, no. 2, pp. 1227–1239.
    https://doi.org/10.1086/432677
  15. Kocharov, L., Kovaltsov, G.A., and Torsti, J., Trapping and Precipitation of Protons During Stochastic Acceleration in Magnetic Loops, Astrophys. J., 2000, vol. 543, no. 1, pp. 438–446.
    https://doi.org/10.1086/317087
  16. Kulikova, G.N., Molodensky, M.M., Starkova, L.I., and Filippov, B.P., On Electric Currents in the Active Region HR 16927, Solnechnye magnitnye polya i korona, Trudy XIII konsul’tativnogo soveshchaniya po fizike Solntsa, Odessa, 26 sentyabrya-2 oktyabrya 1988 goda (Solar Magnetic Fields and Corona, Proc. XIII Consultative Conf. on Solar Physics, Odessa, September 26–October 2, 1988), Novosibirsk: Nauka, 1989, vol. 2, pp. 156–161.
  17. Lee, J., McClymont, A.N., Mikic, Z., et al., Coronal Currents, Magnetic Fields, and Heating in a Solar Active Region, Astrophys. J., 1998, vol. 501, no. 2, pp. 853–865.
    https://doi.org/10.1086/305851
  18. Litvinenko, Y.E., Heavy Ion Abundances in Impulsive Solar Flares: Influence of Pre-Acceleration in a Current Sheet, Solar. Phys., 2002, vol. 205, no. 2, pp. 341–349.
    https://doi.org/10.1023/A:1014231124805
  19. Litvinenko, Y.E., Energies of Electrons Accelerated in Turbulent Reconnecting Current Sheets in Solar Flares, Solar. Phys., 2003, vol. 212, no. 2, pp. 379–388.
    https://doi.org/10.1023/A:1022942923783
  20. Litvinenko Y.E. and Craig, I.J.D., Flare Energy Release by Flux Pile-up Magnetic Reconnection in a Turbulent Current Sheet, Astrophys. J., 2000, vol. 544, no. 2, pp. 1101–1107.
    https://doi.org/10.1086/317262
  21. Litwin, C. and Rosner R., Alfvén Wave Transmission and Heating of Solar Coronal Loops, Astrophys. J., 1998, vol. 499, no. 2, pp. 945–950.
    https://doi.org/10.1086/305651
  22. Luo, Q.Y. and Wei, F.S., and Feng, X.S., Electron Acceleration by Lower Hybrid Turbulence in Solar Flares, Astrophys. J., 2003, vol. 584, no. 1, pp. 497–508.
    https://doi.org/10.1086/345618
  23. Nindos, A., White, S.M., Kundu, M.R., and Gary, D.E., Observations and Models of a Flaring Loop, Astrophys. J., 2000, vol. 533, no 2, pp. 1053–1062.
    https://doi.org/10.1086/308705
  24. Paesold, G., Kallenbach, R., and Benz, A.O., Acceleration and Enrichment of 3He in Impulsive Solar Flares by Electron Firehose Waves, Astrophys. J., 2003, vol. 582, no. 1, pp. 495–505.
    https://doi.org/10.1086/344593
  25. Pevtsov, A.A., Canfield, R.C., and McClymont, A.N., On the Subphotospheric Origin of Coronal Electric Currents, Astrophys. J., 1997, vol. 481, no 2, pp. 973–977.
    https://doi.org/10.1086/304065
  26. Priest, E.R. and Schrijver, C.J., Aspects of Three-Dimensional Magnetic Reconnection (Invited Review), Solar. Phys., 1999, vol. 190, no. 1–2, pp. 1–24.
    https://doi.org/10.1023/A:1005248007615
  27. Qiu, J., Lee, J., Gary, D.E., and Wang, H., Motion of Flare Footpoint Emission and Inferred Electric Field in Reconnecting Current Sheets, Astrophys. J., 2002, vol. 565, no. 2. pp. 1335–1347.
    https://doi.org/10.1086/324706
  28. Reale, F., Nigro, G., Malara, F., et al., Modeling a Coronal Loop Heated by Magnetohydrodynamic Turbulence Nanoflares, Astrophys. J., 2005, vol. 633, no. 1, pp. 489–503.
    https://doi.org/10.1086/444409
  29. Roberts, B., Waves Oscillations in the Corona (Invited Review), Solar. Phys., 2000, vol. 193, no, 1–2, pp. 139–152.
    https://doi.org/10.1023/A:1005237109398
  30. Stepanov, A.V. and Tsap, Y.T., Electron-Whistler Iinteraction in Coronal Loops and Radiation Signatures, Solar. Phys., 2002, vol. 211, no. 1–2, pp. 135–154.
    https://doi.org/10.1023/A:1022476010960
  31. Tsap, Y.T., On the Cascading Acceleration of the Quasi-Thermal Electrons by MHD Turbulence in Solar Flares, Solar. Phys., 2000, vol. 194, no. 1, pp. 131–136.
    https://doi.org/10.1023/A:1005212122349
  32. Vasquez, A.M. and Gymez, D.O., Beam-generated Plasma Turbulence During Solar Flares, Astrophys. J., 1997, vol. 484, no. 1, pp. 463–471.
    https://doi.org/10.1086/304324
  33. Verwichte, E., Nakariakov, V.M., Ofman, L., and Deluca, E.E., Characteristics of Transverse Oscillations in a Coronal Loop Arcade, Solar. Phys., 2004, vol. 223, no. 1–2, pp. 77–94.
    https://doi.org/10.1007/s11207-004-0807-6
  34. Voitenko, Y. and Goossens, M., Excitation of High-Frequency Alfvén Waves by Plasma Outflows from Coronal Reconnection Events, Solar. Phys., 2002, vol. 206, no. 2, pp. 285–313.
    https://doi.org/10.1023/A:1015090003136
  35. Wu, D.J. and Fang, C., Two-Fluid Motion of Plasma in Alfvén Waves and the Heating of Solar Coronal Loops, Astrophys. J., 1999, vol. 511, no. 2, pp. 958–964.
    https://doi.org/10.1086/306712
  36. Wu, C.S., Li, Y., Chao, J.K., et al., Solar Energetic Ions Created in a Reconnection Layer by Alfvén Wave Pickup, Astrophys. J., 1998, vol. 495, no 2, pp. 951–956.
    https://doi.org/10.1086/305314