Cosmic ray acceleration in Hypernova remnants expanding into wind bubbles of progenitor stars of Wolf-Rayet type

1Masliukh, VO, 1Hnatyk, BI
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(5):3-24
Start Page: Extragalactic Astronomy
Language: Ukrainian
Abstract: 

One of actual problems of modern astrophysics is the origin of observed cosmic rays with energy more than 1017 eV, that exceeds the expected energy in the case of accelerating the cosmic rays by Supernova remnants in our galaxy. One of the possible sources of galactic cosmic rays with energies up to 1019 eV are remnants of Hypernovae, superpower Supernova explosions whose precursors are considered to be massive Wolf — Rayet stars. We analyse the characteristics of cosmic ray acceleration in Hypernova remnants expanding into wind bubbles of stars-precursors of the Wolf — Rayet type. It is shown that the maximum values for the energy of such cosmic rays, even when selecting relatively conservative acceleration process values, reach 1018 eV. Their contribution to the observed in the Earth’s vicinity flux of cosmic rays with energies from 1016 to 1018 eV is found to be several tens of percents at the frequency of Hypernova explosions in the Galaxy for the present era NS = 10-4 year-1.

Keywords: cosmic rays, Hypernova, progenitor stars of Wolf-Rayet type
References: 

1.R. Aloisio, V. Berezinsky, P. Blasi, et al., “A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays,” Astropart. Phys. 27, 76–91 (2007).
https://doi.org/10.1016/j.astropartphys.2006.09.004

2.S. J. Arthur, “Wind-blown bubbles around evolved stars,” in Diffuse Matter from Star Forming Regions to Active Galaxies. A Volume Honouring John Dyson, Ed. by T. W. Hartquist, J. M. Pittard, and S. A. E. G. Falle (Springer, Dordrecht, 2007), pp. 183–203.
https://doi.org/10.1007/978-1-4020-5425-9_10

3.W. I. Axford, “The origins of high-energy cosmic rays,” Astrophys. J., Suppl. Ser. 90, 937–944 (1994).
https://doi.org/10.1086/191928

4.A. Bell and S. Lucek, “Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field,” Mon. Not. R. Astron. Soc. 321, 433–438 (2001).
https://doi.org/10.1046/j.1365-8711.2001.04063.x

5.A. R. Bell, K. M. Schure, and B. Reville, “Cosmic ray acceleration at oblique shocks,” Mon. Not. R. Astron. Soc. 418, 1208–1216 (2011).
https://doi.org/10.1111/j.1365-2966.2011.19571.x

6.R. D. Blandford and C. F. McKee, “Fluid dynamics of relativistic blast waves,” Phys. Fluids 19, 1130–1138 (1976).
https://doi.org/10.1063/1.861619

7.R. Budnik, B. Katz, A. MacFadyen, and E. Waxman, “Cosmic rays from transrelativistic supernovae,” Astrophys. J. 673, 928–933 (2008).
https://doi.org/10.1086/524923

8.D. Caprioli, P. Blasi, and E. Amato, “The contribution of supernova remnants to the galactic cosmic ray spectrum,” Astropart. Phys. 33, 160–168 (2010).
https://doi.org/10.1016/j.astropartphys.2010.01.002

9.D. Caprioli, P. Blasi, and E. Amato, “Non-Linear diffusive shock acceleration with free-escape boundary,” Astropart. Phys. 33, 307–311 (2010).
https://doi.org/10.1016/j.astropartphys.2010.03.001

10.D. Caprioli, P. Blasi, and E. Amato, “Non-Linear diffusive acceleration of heavy nuclei in supernova remnant shocks,” Astropart. Phys. 34, 447–456 (2011).
https://doi.org/10.1016/j.astropartphys.2010.10.011

11.D. Caprioli, H. Kang, A. E. Vladimirov, and T. W. Jones, “Comparison of different methods for non-linear diffusive shock acceleration,” Mon. Not. R. Astron. Soc. 407, 1773–1783 (2010).
https://doi.org/10.1111/j.1365-2966.2010.17013.x

12.P. A. Crowther, A. W. Fullerton, D. J. Hillier, et al., “Far Ultraviolet Spectroscopic Explorer spectroscopy of the O VI resonance doublet in Sand 2 (WO),” Astrophys. J., Lett. 538, L51–L55 (2000).
https://doi.org/10.1086/312783

13.C. De Donato and G. A. Medina-Tanco, “Experimental constraints on the astrophysical interpretation of the cosmic ray galactic-extragalactic transition region,” Astropart. Phys. 32, 253–268 (2009).
https://doi.org/10.1016/j.astropartphys.2009.09.004

14.J. J. Eldridge, “Asymmetric Wolf-Rayet winds: implications for gamma-ray burst afterglows,” Mon. Not. R. Astron. Soc.: Lett. 377, L29–L33 (2007).
https://doi.org/10.1111/j.1745-3933.2007.00297.x

15.J. Eldridge, F. Genet, F. Daigne, and R. Mochkovitch, “The circumstellar environtment of Wolf-Rayet stars and gamma-ray burst afterglows,” Mon. Not. R. Astron. Soc. 367, 186–200 (2006).
https://doi.org/10.1111/j.1365-2966.2005.09938.x

16.D. C. Ellison and A. Vladimirov, “Magnetic field amplification and rapid time variations in SNR RX J1713.7-3946,” Astrophys. J., Lett. 673, L47–L50 (2008).
https://doi.org/10.1086/527359

17.Y.-Z. Fan, “Cosmic ray protons in the energy range 1016–1018.5 eV: stochastic gyroresonant acceleration in hypernova shocks?,” Mon. Not. R. Astron. Soc. 389, 1306–1310 (2008).
https://doi.org/10.1111/j.1365-2966.2008.13632.x

18.G. Ferrand, A. Decourchelle, J. Ballet, et al., “3D simulations of supernova remnants evolution including non-linear particle acceleration,” Astron. Astrophys. 509, L10 (2010).
https://doi.org/10.1051/0004-6361/200913666

19.B. I. Gnatyk, “Evolution of supernova remnants in a medium with a large-scale density gradient,” Sov. Astron. Lett. 14(4), 309 (1988).

20.E. J. Greenfield, J. R. Jokipii, and J. Giacalone, “Magnetohydrodynamic fluid stability in the presence of streaming cosmic rays,” arXiv:1205.0269 (2012).

21.A. M. Hillas, “Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?,” J. Phys. G: Nucl. Part. Phys. 31, R95–R131 (2005).
https://doi.org/10.1088/0954-3899/31/5/R02

22.J. Hjorth and J. S. Bloom, “The GRB-supernova connection,” in Gamma-Ray Bursts, Ed. by C. Kouveliotou, R. A. M. J. Wijers, and S. Woosley (Cambridge University Press, 2011).

23.J. R. Horandel, “Cosmic-Ray composition and its relation to shock acceleration by supernova remnants,” Adv. Space Res. 41, 442–463 (2008).
https://doi.org/10.1016/j.asr.2007.06.008

24.H. Kang, D. Ryu, and T. W. Jones, “Self-Similar evolution of cosmic-ray modified shocks: the cosmic-ray spectrum,” Astrophys. J. 695, 1273–1288 (2009).
https://doi.org/10.1088/0004-637X/695/2/1273

25.M. Limongi and A. Chieffi, “Presupernova evolution and explosion of massive stars with mass loss,” in The Multicolored Landscape of Compact Objects and Their Explosive Origins: Cefalu 2006, Ed. by L. A. Antonelli, G. L. Israel, L. Piersanti, and A. Tornambe (American Institute of Physics, 2007), pp. 226–233.

26.R.-Y. Liu and X.-Y. Wang, “Energy spectrum and chemical composition of ultrahigh energy cosmic rays from semi-relativistic hypernovae,” Astrophys. J. 746, 40–50 (2012).
https://doi.org/10.1088/0004-637X/746/1/40

27.R.-Y. Liu, X.-Y. Wang, and Z.-G. Dai, “Nearby low-luminosity gamma-ray bursts as the sources of ultra-high-energy cosmic rays revisited,” Mon. Not. R. Astron. Soc. 418, 1382–1391 (2011).
https://doi.org/10.1111/j.1365-2966.2011.19590.x

28.A. Marcowith and F. Casse, “Postshock turbulence and diffusive shock acceleration in young supernova remnants,” Astron. Astrophys. 515, A90 (2010).
https://doi.org/10.1051/0004-6361/200913022

29.A. Marcowith, M. Lemoine, and G. Pelletier, “Turbulence and particle acceleration in collisionless supernovae remnant shocks. II. Cosmic-Ray transport,” Astron. Astrophys. 453, 193–202 (2006).
https://doi.org/10.1051/0004-6361:20054738

30.C. McKee and S. Colgate, “Relativistic shock hydrodynamics,” Astrophys. J. 181, 903–938 (1973).
https://doi.org/10.1086/152102

31.G. Pelletier, M. Lemoine, and A. Marcowith, “Turbulence and particle acceleration in collisionless supernovae remnant shocks. I. Anisotropic spectra solutions,” Astron. Astrophys. 453, 181–191 (2006).
https://doi.org/10.1051/0004-6361:20054737

32.V. S. Ptuskin and V. N. Zirakashvili, “On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation,” Astron. Astrophys. 429, 755–765 (2005).
https://doi.org/10.1051/0004-6361:20041517

33.S. Schulze, S. Klose, G. Bjornsson, et al., “The circumburst density profile around GRB progenitors: a statistical study,” Astron. Astrophys. 526, A23 (2011).
https://doi.org/10.1051/0004-6361/201015581

34.K. M. Schure, A. R. Bell, L. O’C Drury, and A. M. Bykov, “Diffusive shock acceleration and magnetic field amplification,” Space Sci. Rev. 173, 491–519 (2012).
https://doi.org/10.1007/s11214-012-9871-7

35.A. M. Soderberg, S. Chakraborti, G. Pignata, et al., “A Relativistic type Ibc supernova without a detected gamma-ray burst,” Nature 463, 513–515 (2010).
https://doi.org/10.1038/nature08714

36.A. M. Soderberg, S. R. Kulkarni, E. Nakar, et al., “Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions,” Nature 442, 1014–1017 (2006).
https://doi.org/10.1038/nature05087

37.L. G. Sveshnikova, “The knee in the galactic cosmic ray spectrum and variety in supernovae,” Astron. Astrophys. 409, 799–807 (2003).
https://doi.org/10.1051/0004-6361:20030909

38.J. L. Synge, The Relativistic Gas (North-Holland Pub. Co., Amsterdam, 1957).

39.V. Tatischeff, “Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J,” Astron. Astrophys. 499, 191–213 (2009).
https://doi.org/10.1051/0004-6361/200811511

40.J. A. Toala and S. J. Arthur, “Radiation-Hydrodynamic models of the evolving circumstellar medium around massive stars,” Astrophys. J. 737, 100 (2011).
https://doi.org/10.1088/0004-637X/737/2/100

41.A. J. van Marle, N. Langer, A. Achterberg, and G. Garcaia-Segura, “Forming a constant density medium close to long gamma-ray bursts,” Astron. Astrophys. 460, 105–116 (2006).
https://doi.org/10.1051/0004-6361:20065709

42.A. E. Vladimirov, A. M. Bykov, and D. C. Ellison, “Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification,” Astrophys. J. 688, 1084–1101 (2008).
https://doi.org/10.1086/592240

43.X.-Y. Wang, S. Razzague, and P. Meszaros, “On the origin and survival of ultra-high-energy cosmic-ray nuclei in gamma-ray bursts and hypernovae,” Astrophys. J. 677, 432–440 (2008).
https://doi.org/10.1086/529018

44.X.-Y. Wang, S. Razzaque, P. Meszaros, and Z.-G. Dai, “High-Energy cosmic rays and neutrinos from semire-lativistic hypernovae,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 76(8), 083009 (2007).
https://doi.org/10.1103/PhysRevD.76.083009

45.S. E. Woosley, “Models for gamma-ray burst progenitors and central engines,” in Gamma-Ray Bursts, Ed. by C. Kouveliotou, R. A. M. J. Wijers, and S. Woosley (Cambridge University Press, 2011).

46.V. N. Zirakashvili and F. A. Aharonian, “Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946,” Astrophys. J. 708, 965–980 (2010).
https://doi.org/10.1088/0004-637X/708/2/965