On the accuracy of indirect methods for estimation of asteroid sizes

1Morozhenko, OV, 1Vidmachenko, AP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(5):49-56
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian

Using data on the maximum value of negative polarization degree is shown to be the least reliable in estimating asteroid albedos. To improve the reliability of the method based on the information relative to the positive polarization branch slope, the approximation coefficient values are bound to be chosen for a particular type of asteroids. The same situation is in the case of the thermal method where each type needs a corresponding value of the phase integral q. In addition, the accuracy of both methods increases if a corresponding type of characteristic phase dependence of brightness is used for the transition from to , including the opposition effect. Our simulation within the framework of the Irwin — Yanovitskij modification of the Hapke shadow model shows that the values of the phase coefficient β (10° ≤ α ≤ 20°) and q lie within the limits 0.016—0.030 and 0.6—1.0 (E-type of asteroids), 0.026—0.033 and 0.42—0.52 (M-, S-types), 0.031—0.039 and 0.42—0.52 (C-type), respectively.

Keywords: asteroid, method

1.A. V. Morozhenko, “The Results of Polarimetric Observations of Mars in 1971 and 1973,” Astrometriya I Astrofizika 26, 97–107 (1975).

2.A. V. Morozhenko and A. P. Vid’machenko, “A Shadow Mechanism and the Opposition Effect of Brightness of Atmosphereless Celestial Bodies,” Kinematics Phys. Celest. Bodies 29(5), (2013) (in press).

3.A. V. Morozhenko, A. A. Rubashevskii, and E. G. Yanovitskii, “The Results of Statistical Processing of Observations of the Phase Dependence of the Integral Brightness Mars,” Astron. Zh. 47(5), 1073–1082 (1970).

4.D. A. Allen, “Infrared Diameter of Vesta,” Nature 227(5254), 158 (1970).

5.G. V. Coyne and S. F. Pellicori, “Wavelength Dependence of Polarization. XX. The Integrated Disk of the Moon,” Astron. J. 75(1), 54–60 (1970).

6.O. L. Hansen, “Radii and Albedos of 84 Asteroids from Visual and Infrared Photometry,” Astron. J. 81(1), 74–84 (1976).

7.A. Dollfus and M. Auriere, “Optical Polarimetry of Planet Mercury,” Icarus 23(3), 465–482 (1974).

8.A. Dollfus and E. Bowell, “Polarimetric Properties of the Lunar Surface and Its Interpretation. 1. Telescopic Observations,” Astron. Astrophys. 10(1), 29–53 (1971).

9.W. M. Irvine, Th. Simon, D. H. Menzel, et al., “Multicolor Photoelectric Photometry of the Brighter Planets. III. Observations from the Boyden Observatory,” Astron. J. 73(9), 807–828 (1968).

10.C. E. Ken Knight, D. L. Rosenberg, and G. K. Venher, “Parameters of the Optical Properties of the Lunar Surface Powder in Relation To Solar Wind Bombardment,” J. Geophys. Res. 72(12), 3105–3129 (1967).

11.A. P. Lane and W. M. Irvine, “Monochromatic Phase Curves and Albedos for the Lunar Disk,” Astron. J. 78(3), 267–277 (1973).

12.D. F. Lupishko and M. DiMartino, “Physical Properties of Near-Earth Asteroids,” Planet. Space Sci. 46(1), 47–74 (1998).

13.D. F. Lupishko and R. A. Mohsmed, “A New Calibration of the Polarimetric Albedo Scale of Asteroids,” Icarus 119(1), 209–213 (1996).

14.D. Morrison, “Determination of Radii of Satellites and Asteroids from Radiometry and Photometry,” Icarus 19(1), 1–14 (1973).

15.D. Morrison, “Asteroids Size and Diameters,” Icarus 31(2), 185–220 (1977).

16.J. Veverka, “The Polarization Curve and the Absolute Diameter of Vesta,” Icarus 15(1), 11–17 (1971).

17.J. Veverka and M. Noland, “Asteroid Reflectivities from Polarization Curves: Calibration of the Slope-Albedo Relationship,” Icarus 19(2), 230–239 (1973).

18.Th. Widorn, “Zur Photometrischen Bestimmung Der Durchmesser Der Kleinen Planeten,” Ann. Univ.-Sternwarte Wien 27(2–4), 112–120 (1967).

19.B. Zellner and J. Gradie, “Minor Planets and Related Objects. XX. Polarimetric Evidence for the Albedos and Compositions of 94 Asteroids,” Astron. J. 81(4), 262–280 (1976).