Properties of dispersive alfven waves. 2. Kinetics (finite and high pressure)

Heading: 
1Malovichko, PP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2014, 30(1):33-49
Start Page: Space physics
Language: Russian
Abstract: 

The work is devoted to study behaviour of dispersive Alfven waves (DAW) in a finite and high pressure astrophysical plasma. It is obtain all main waves characteristics — dispersion, damping, polarization, density perturbation, charge density perturbation. It is analyzed the influence of astrophysical environment parameeer on a DAW behaveor and propereies. It is shown, that waves behaviour in a finite and high pressure plasma are essentially different from very low, intermediate and low pressure plasma.

Keywords: Alven waves, plasma
References: 

1.A. F. Aleksandrov, L. S. Bogdankevich, and A. P. Rukhadze, Fundamentals of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978) [in Russian].

2.P. P. Malovichko, “Propagation of Alfvén waves in the plasma sheet boundary region of the Earth’s magnetospheric tail,” Geomagn. Aeron. 35, 89–95 (1995).

3.P. P. Malovichko, “Generation of Alfvén waves in the plasma sheet of the Earth’s magnetospheric tail,” Kosm. Nauka Tekhnol. 18(5), 41–47 (2012).

4.P. P. Malovichko, “Properties of dispersive Alfvén waves: 1. Kinetics (very low, intermediate, and low density plasmas),” Kinem. Phys. Celest. Bodies 29, 2013 (in press).

5.P. P. Malovichko, A. N. Krishtal’, and A. K. Yukhimuk, “Influence of temperature irregularities on the generaton of kinetic Alfvén waves in the Earth’s magnetosphere,” Kinem. Phys. Celest. Bodies 22, 41–45 (2006).

6.N. H. Bian, E. P. Kontar, and J. C. Brown, “Parallel electric field generation by Alfvén wave turbulence,” Astron. Astrophys. 519, A114 (2010).
https://doi.org/10.1051/0004-6361/201014048

7.G. Brodin, L. Stenflo, and P. K. Shukla, “Nonlinear interactions between kinetic Alfvén and ion-sound waves,” Sol. Phys. 236, 285–291 (2006).
https://doi.org/10.1007/s11207-006-0125-2

8.L. Chen and D. J. Wu, “Kinetic Alfvén wave instability driven by field-aligned currents in solar coronal loops,” Astrophys. J. 754, 123 (2012).
https://doi.org/10.1088/0004-637X/754/2/123

9.N. F. Cramer, The Physics of Alfvén Waves (Wiley, New York, 2001).
https://doi.org/10.1002/3527603123

10.W. Farrell, S. Curtis, M. Desch, and R. P. Lepping, “A theory for narrow-banded radio bursts at Uranus: MHD surface waves as an energy driver,” J. Geophys. Res.: Space Phys. 97, 4133–4141 (1992).
https://doi.org/10.1029/91JA03143

11.L. Fletcher and H. S. Hudson, “Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem,” Astrophys. J. 675, 1645–1656 (2008).
https://doi.org/10.1086/527044

12.A. Hasegawa, “Kinetic theory of MHD instabilities in a nonuniform plasma,” Sol. Phys. 47, 325–330 (1976).
https://doi.org/10.1007/BF00152271

13.J. V. Hollweg, “Kinetic Alfvén wave revisited,” J. Geophys. Res.: Space Phys. 104, 14811–14819 (1999).
https://doi.org/10.1029/1998JA900132

14.G. S. Lakhina, “Generation of ULF waves in the polar cusp region by velocity shear-driven kinetic Alfvén modes,” Astrophys. Space Sci. 165, 153–161 (1990).
https://doi.org/10.1007/BF00653667

15.M. Malik and R. P. Sharma, “Nonlinear evolution of kinetic Alfvén waves and filament formation,” Sol. Phys. 229, 287–304 (2005).
https://doi.org/10.1007/s11207-005-8778-9

16.P. P. Malovichko, “Correlation of longitudinal currents with Alfvén wave generation in the solar atmosphere,” Kinem. Phys. Celest. Bodies 23, 185–190 (2007).
https://doi.org/10.3103/S0884591307050017

17.P. P. Malovichko, “Generation of low-frequency magnetic field disturbances in coronal loops by proton and electron beams,” Kinem. Phys. Celest. Bodies 26, 62–70 (2010).
https://doi.org/10.3103/S0884591310020030

18.P. P. Malovichko, “Stability of magnetic configurations in the solar atmosphere under temperature anisotropy conditions,” Kinem. Phys. Celest. Bodies 24, 236–241 (2008).
https://doi.org/10.3103/S0884591308050024

19.S. Perri, V. Carbone, and P. Veltri, “Where does fluid-like turbulence break down in the solar wind?,” Astrophys. J. Lett. 725, L52–L55 (2010).
https://doi.org/10.1088/2041-8205/725/1/L52

20.T. Siversky, Y. Voitenko, and M. Goossens, “Shear flow instabilities in low-beta space plasmas,” Space Sci. Rev. 121, 343–351 (2005).
https://doi.org/10.1007/s11214-006-7182-6

21.K. W. Smith and P. W. Terry, “Damping of electron density structures and implications for interstellar scintillation,” Astrophys. J. 730, 133 (2011).
https://doi.org/10.1088/0004-637X/730/2/133

22.Y. Su, R. E. Ergun, S. T. Jones, R. J. Strangeway, C. C. Chaston, S. E. Parker and J. L. Horwitz, “Generation of short-burst radiation through Alfvénic acceleration of auroral electrons,” J. Geophys. Res.: Space Phys. 112, A06209 (2007).

23.B. V. Tiwari, R. Mishra, P. Varma, and M. S. Tiwari, “Shear driven kinetic Alfvén wave with general loss-cone distribution function in the plasma sheet boundary layer,” Earth, Moon, Planets 103, 43–63 (2008).
https://doi.org/10.1007/s11038-008-9233-3

24.Y. Voitenko and M. Goossens, “Cross-field heating of coronal ions by low-frequency kinetic Alfvén waves,” Astrophys. J. Lett. 605, L149–L152 (2004).
https://doi.org/10.1086/420927

25.Y. Voitenko and M. Goossens, “Energization of plasma species by intermittent kinetic Alfvén waves,” Space Sci. Rev. 122, 255–270 (2006).
https://doi.org/10.1007/s11214-006-8212-0

26.D. J. Wu and C. Fang, “Coronal plume heating and kinetic dissipation of kinetic Alfvén waves,” Astrophys. J. 596, 656–662 (2003).
https://doi.org/10.1086/377599

27.D. J. Wu, J. Huang, J. F. Tang, and Y. H. Yan, “Solar microwave drifting spikes and solitary kinetic Alfvén waves,” Astrophys. J. Lett. 665, L171–L174 (2007).
https://doi.org/10.1086/521360

28.D. J. Wu and L. Yang, “Anisotropic and mass-dependent energization of heavy ions by kinetic Alfvén waves,” Astron. Astrophys. 452, L7–L10 (2006).
https://doi.org/10.1051/0004-6361:20065186