Diagnostics of the solar atmosphere by non-LTE inverse method: Line of Ba II λ 455.403 nm

1Stodilka, MI, 1Prysiazhnyi, AI
1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(1):33-42
Start Page: Solar Physics
Language: Russian

We solved nonequilibrium radiative transfer inverse problem in the Ba II λ 455.403 nm line with the hyperfine structure and isotope splitting taken into account. Based on three-dimensional hydrodynamic model of the solar atmosphere, we performed a research to determine the diagnostic capabilities of the Ba II λ 455.403 nm line for studying the structure and dynamics of the solar atmosphere. It is shown that inverse technique used for the analysis of the observed Ba II λ 455.403 nm line allows to reproduce physical conditions in the photosphere and lower chromosphere layers (0 < h < 600 km) with a correlation coefficient of about 0.9.

Keywords: Ba II line, nonequilibrium radiative transfer, solar atmosphere

1.L. A. Vainshtein, I. I. Sobel’man, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, in Ser. Springer Series in Chemical Physics, Vol. 7 (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1981).

2.M. I. Stodilka, “The inverse problem for a study of solar and stellar atmosphere inhomogeneities,” Zh. Fiz. Dosl. 6, 435–442 (2002).

3.M. I. Stodilka, “Tikhonov stabilizers in inverse problems of spectral studies,” Kinematika Fiz. Nebesnykh Tel 19, 334–343 (2003).

4.M. Asplund, H. G. Ludwig, A. Nordlund, and R. F. Stein, “The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation,” Astron. Astrophys. 350, 669–681 (2000).

5.L. Belluzzi and J. Bueno Tryjillo, “A key physical mechanism for understanding the enigmatic linear polarization of the solar Ba II and Na I D2 lines,” Astrophys. J., Lett. 774 (2), 1–5 (2013).

6.A. Burgess and M. J. Seaton, “A general formula for the calculation of atomic photoionization cross-sections,” Mon. Not. R. Astron. Soc. 120, 121–151 (1960).MathSciNet

7.J. de la Cruz Rodriguez, H. Socas-Navarro, M. Carlsson, and J. Leenaarts, “Nonlocal thermodynamic equilibrium inversions from a 3D magnetohydrodynamic chromospheric model,” Astron. Astrophys. 543, A34 (2012).

8.M. Faurobert, V. Bommier, and M. Derouich, “Non-LTE modeling of the Ba II D2 line resonance polarization,” in Solar Polarization 5: In Honor of Jan Olog Stenflo, Ed. by S. V. Berdyugina, K. N. Nagendra and R. Ramelli (Astron. Soc. Pacif., San Francisco, 2009), in Ser. ASP Conference Series, Vol. 405, pp. 35–40.

9.A. Gandorfer, The Second Solar Spectrum: A High Spectral Resolution Polarimetric Survey of Scattering Polarization at the Solar Limb in Graphical Representation, Vol. 2: 3910 Å to 4630 Å (Hochschulverlag, Zürich, 2002).

10.L. Goldberg, E. A. Müller, and L. H. Aller, “The abundances of the elements in the solar atmosphere,” Astrophys. J., Suppl. Ser. 5, 1–137 (1960).

11.H. Holweger and E. A. Mueller, “The photospheric barium spectrum. Solar abundance and collision broadening of Ba II lines by hydrogen,” Sol. Phys. 79, 19–30 (1974).

12.R. Kostik and E. V. Khomenko, “Properties of convestive motions in facular regions,” Astron. Astrophys. 545, A22 (2012).

13.R. Kostik, E. Khomenko, and N. Shchukina, “Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line,” Astron. Astrophys. 506, 1405–1414 (2009).

14.R. I. Kostyk, N. G. Shchukina, and E. V. Khomenko, “Fine structure of wave motions in the solar photosphere: Observations and theory,” Astron. Rep. 50, 588–600 (2006).

15.J. Koza, “Sensitivity of selected Ba II, Fe I, Fe II, and Cr I spectral lines to velocity in quiet solar atmosphere,” Sol. Phys. 266, 261–275 (2010).

16.J. Koza, “The spectral line Ba II 6497 Å as a sensitive Doppler diagnostics,” Contrib. Astron. Obs. Skalnate Pleso 41, 167–174 (2011).

17.D. L. Lambert and B. Warner, “The abundances of the elements in the solar photosphere. V. The alkaline earths Mg, Ca, Sr, Ba,” Mon. Not. R. Astron. Soc. 140, 197–221 (1968).

18.V. L. Ol’shevskii, N. G. Shchukina, and I. E. Vasil’eva, “NLTE formation of the resonance Ba II line γ 455.4 nm in the solar atmosphere,” Kinematics Phys. Celestial Bodies 24, 145–158 (2008).

19.G. Peach, “A revised general formula for the calculation of atomic photoionization cross sections,” Mon. Not. R. Astron. Soc. 71, 13–27 (1967).

20.R. J. Rutten, “Extreme limb observations of Ba II γ 4554 and Mg I γ 4571,” Sol. Phys. 51, 3–24 (1977).

21.R. J. Rutten, “Emperical NLTE analyses of solar spectral lines. II. The formation of the Ba II γ 4554 resonance line,” Sol. Phys. 56, 237–262 (1978).

22.R. J. Rutten and R. W. Milkey, “Partial redistribution in the solar photosperic Ba II spectrum,” Astrophys. J. 231, 277–283 (1979).

23.N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).

24.H. N. Smitha, K. N. Nagendra, J. O. Stenflo, and M. Sampoorna, “The role of quantum interference and partial redistribution in the solar Ba D2 4554 Å line,” in Solar Polarization 7, Ed. by K. N. Nagendra, J. O. Stenflo, Z. Q. Qu, and M. Sampoorna (Astron. Soc. Pacif., San Francisco, 2014) in Ser. ASP Conf. Ser, Vol. 489, p. 213.

25.H. Socas-Navarro, J. de la Cruz Rodriguez, A. Asensio Ramos, et al., “An open-source, massively parallel code for non-LTE synthesis and inversion of spectral lines and Zeeman-induced Stokes profiles,” Astron. Astrophys. 577, A7 (2015).

26.P. Sütterlin, R. J. Rutten, and V. I. Skomorovsky, “Ba II 4554 Å speckle imaging as solar Doppler diagnostic,” Astron. Astrophys. 378, 251–256 (2001).

27.E. Tandberg-Hanssen, “The equilibrium of barium in the solar atmosphere,” Astrophys. J., Suppl. Ser. 9, 107 (1964).

28.E. Tandberg-Hanssen and C. Smythe, “The excitation of ionized Barium in the chromosphere,” Astrophys. J. 161, 289–302 (1970).