The imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter's disc

1Morozhenko, OV, 1Ovsak, AS, 1Vidmachenko, AP, 2Teifel, VG, 2Lysenko, PG
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Fesenkov Astrophysical Institute, Almaty, Kazakhstan
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(1):43-55
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

They were smaller in the zones than in the belts and there are: 0.00017-0.00041 and 0.00063-0.00098 on the λ = 605 nm; 0.00019-0.00041 and 0.00065-0.00097 on the λ = 631 nm; 0.00017-0.00041 and 0.00070-0.00112 on the λ = 714 nm, 0.00019-0.00044 and 0.00069-0.00111 on the λ= 742 nm, respectively. Perhaps these results are reflecting the difference in the vertical stratification of the nature of cloud layers, as well as the sizes of aerosol particles (in zones they are larger).

Keywords: aerosol particles, Jupiter, latitudinal belts, refractive index
References: 

1.V. V. Avramchuk, L. A. Bugaenko, A. V. Morozhenko, and E. G. Yanovitskii, “The results of research of Jupiter performed at the Main astronomical observatory of the Ukrainian SSR Academy of Sciences,” Astrom. Astrofiz., No. 31, 54–68 (1977).

2.M. S. Dement’ev and A. V. Morozhenko, “On the vertical inhomogenity of Uranus and Neptune,” Astron. Vestn. 24, 127–134 (1990).

3.G. P. Kuiper, “Survey of planetary atmospheres,” in The Atmospheres of the Earth and Planets; Papers Presented at the Fiftieth Anniversary Symposium of the Yerkes Observatory, September, 1947, Ed. by G. P. Kuiper (Univ. Chicago Press, Chicago, 1949; Inostrannaya Literatura, Moscow, 1951), pp. 303–345.

4.A. V. Morozhenko, “The results of the polarization studies of Jupiter,” Astrom. Astrofiz., No. 30, 47–54 (1976).

5.A. V. Morozhenko, “On the structure of the Jupiter’s cloud layer,” Pis’ma Astron. Zh. 10, 775–779 (1984).

6.A. V. Morozhenko, “The vertical structure of the Jupiter’s latitudinal cloud belts,” Astron. Vestn. 19, 64–76 (1985).

7.A. V. Morozhenko, “Problems in research of the vertical structures of cloud layers in atmospheres of giant planets,” Kinematika Fiz. Nebesnykh Tel 9, 3–26 (1993).

8.A. V. Morozhenko, “Probable limits to the particle size and mixing ratio of aerosol and methane at the levels of formation of the methane absorption bands at γγ 727, 619, 543 and 441 nm in the atmosphere of Neptune,” Kinematika Fiz. Nebesnykh Tel 15, 110–122 (1999).

9.A. V. Morozhenko, “Difference in the vertical structure of cloud layers of giant planets,” Kinematika Fiz. Nebesnykh Tel 17, 261–278 (2001).

10.A. V. Morozhenko and A. S. Ovsak, “On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets,” Kinematics Phys. Celestial Bodies 31, 225–231 (2015).
https://doi.org/10.3103/S0884591315050074

11.A. V. Morozhenko and E. G. Yanovitskii, “Parameters of the optical model of the Jovian atmosphere for the continuous spectrum in 0.35–0.92 µm range,” Pis’ma Astron. Zh. 2, 50–54 (1976).

12.O. V. Morozhenko, Methods and Results of the Remote Probing of Planetary Atmospheres (Naukova Dumka, Kiev, 2004) [in Ukrainian].

13.A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 61–71 (2015).

14.A. S. Ovsak, V. G. Teifel’, A. P. Vid’machenko, and P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 23–39 (2015).

15.G. T. Sill, “The chemistry of colored Jovian clouds,” in Jupiter, Ed. by T. Gerels (Univ. Arizona Press, Tucson, 1976; Mir, Moscow, 1979), 372–383.

16.E. G. Yanovitskii, “An effective optical thickness of the atmospheric layer where observed spectrum of a planet is formed, conception and elementary estimations,” Kinematika Fiz, Nebesnykh Tel 13 (6), 18–25 (1997).

17.J. W. Chamberlain, “The atmosphere of Venus near cloud top,” Astrophys. J. 141, 1184–1205 (1965).
https://doi.org/10.1086/148207

18.M. S. Dementiev and A. V. Morozhenko, “Zones and belts of Jupiter’s disk. The difference in the vertical structure of cloud layers,” Astron. Vestn. 24, 275–287 (1990).

19.Zh. M. Dlugach and M. I. Mishchenko, “The effect of aerosol shape in retrieving optical properties of cloud particles in the planetary atmospheres from the photopolarimetric data. Jupiter,” Sol. Syst. Res. 32, 102–111 (2005).
https://doi.org/10.1007/s11208-005-0026-1

20.Zh. M. Dlugach and M. I. Mishchenko, “Photopolarimetry of planetary atmospheres: what observational data are essential for a unique retrieval of aerosol microphysics?” Mon. Not. R. Astron. Soc. 384, 64–70 (2008).
https://doi.org/10.1111/j.1365-2966.2007.12679.x

21.L. P. Giver, “Intensity measurements of the CH4 bands in the region of 4350 to 10600 Å,” J. Quant. Spectrosc. Radiat. Transfer 19, 311–322 (1978).
https://doi.org/10.1016/0022-4073(78)90064-X

22.J. E. Hansen, “Circular polarization of sunlight reflected by clouds,” J. Atmos. Sci. 28, 1515–1516 (1971).
https://doi.org/10.1175/1520-0469(1971)028%3C1515%3ACPOSRB%3E2.0.CO%3B2

23.E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).
https://doi.org/10.1006/icar.1994.1139

24.E. Karkoschka, “Methane, ammonia, and temperature measurements of the Jovian planets and Titan from CCD-spectrophotometry,” Icarus 133, 134–146 (1998).
https://doi.org/10.1006/icar.1998.5913

25.Y. Kawata and J. E. Hansen, “Circular polarization of sunlight reflected by Jupiter,” in Jupiter: Studies of the Interior, Atmosphere, Magneteosphere, and Satellites, Ed. by T. Gehrels (Univ. of Arizona Press, Tuscon, 1976), pp. 516–530.

26.J. S. Lewis, “The clouds of the Jupiter and the NH3–H2O and NH3–H2S systems,” Icarus 10, 365–378 (1969).
https://doi.org/10.1016/0019-1035(69)90091-8

27.M. I. Mishchenko, “The FORTRAN code for computing the scattering of an ensemble of polydisperse, homogeneous spherical particles in based on the Lorenz-Mie theory.” http://www.giss.nasa.gov/staff/mmishchenko/ftpcode/spher.f.

28.M. I. Mishchenko, “Physical properties of the upper troposphere aerosols in the equatorial region of Jupiter,” Icarus 84, 296–304 (1990).
https://doi.org/10.1016/0019-1035(90)90039-C

29.M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
https://doi.org/10.1029/96JD02110

30.A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).
https://doi.org/10.3103/S0884591307060025

31.A. V. Morozhenko, A. S. Ovsak, and P. P. Korsun, “The vertical structure of Jupiter’s cloud layer before and after the impact of comet Shoemaker–Levy 9,” in Proc. Eur. SL-9/Jupiter Workshop, Garching, Feb. 13–15, 1995 (European Southern Observatory, Garching, 1995), p. 267.

32.A. V. Morozhenko and E. G. Yanovitskij, “The optical properties of Venus and Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18, 583–592 (1973).
https://doi.org/10.1016/0019-1035(73)90060-2

33.H. B. Niemann, S. K. Altreya, G. R. Carignan, et al., “The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer,” J. Geophys. Res. 103, 22831–22845 (1998).
https://doi.org/10.1029/98JE01050

34.A. S. Ovsak, “Calculation of effective optical depth of absorption line formation in homogeneous semi-infinite planetary atmosphere during anisotropic scattering,” Kinematics Phys. Celestial Bodies 26, 86–88 (2010).
https://doi.org/10.3103/S0884591310020066

35.A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).
https://doi.org/10.3103/S0884591313060056

36.A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Sol. Syst. Res. 49, 43–50 (2015).
https://doi.org/10.1134/S0038094615010050

37.H. A. Papazian, “The colors of Jupiter,” Publ. Astron. Soc. Pacif. 71, 237–239 (1959).
https://doi.org/10.1086/127373

38.A. Sánchez-Lavega, J. Legarreta, E. García-Melendo, et al., “Colors of Jupiter’s large anticyclones and the interaction of a Tropical Red Oval with the Great Red Spot in 2008,” J. Geophys. Res. Planets 118, 2537–2556 (2013).
https://doi.org/10.1002/2013JE004371

39.A. Seiff, D. B. Kirk, T. C. D. Knight, et al., “Thermal structure of Jupiter’s atmosphere near the edge of a 5-µm hot spot in the north equatorial belt,” J. Geophys. Res. Planets 103, 22857–22889 (1998).
https://doi.org/10.1029/98JE01766

40.H. C. Urey, The Planets, Their Origin, and Development (Oxford Univ. Press, London, 1952).

41.S. J. Weidenscilling and L. S. Lewis, “Atmospheric and cloud structures of the Jovian planets,” Icarus 20, 465–476 (1973).
https://doi.org/10.1016/0019-1035(73)90019-5

42.R. Wildt, “On the chemical nature of the colouration in Jupiter’s cloud forms,” Mon. Not. R. Astron. Soc. 99, 616–623 (1939).
https://doi.org/10.1093/mnras/99.8.616

43.E. G. Yanovitskij and A. S. Ovsak, “Effective optical depth of absorption line formation in semi-infinite planetary atmospheres,” Kinematika Fiz. Nebesnykh Tel 13 (4), 1–19 (1997).