The structure of azimuthally-small-scaled ULF-oscillations of hot space plasma in the curved magnetic field. The modes with the discrete spectrum

Heading: 
1Cheremnykh, OK, 2Klimushkin, DY, 2Mager, PN
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
2Institute of Solar-Terrestrial Physics of the Siberian Branch of the RAS, Irkutsk, Russia
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(3):26-39
Start Page: Space Physics
Language: Russian
Abstract: 

The model of one-dimensional inhomogeneous cylindrical plasma with a magnetic field whose field-lines are concentric circles, and the equilibrium parameters of the magnetic field and the medium are changing across the magnetic shells was reviewed. Under this model, the possibility of the existence of Alfven modes with a discrete spectrum was shown. A prerequisite for the appearance of such modes is the presence of resonators across the magnetic shells, which can be implemented in the area of the ring current, or near the edge of plasmapause. The characteristics of the implementation modes with a discrete spectrum were studied. The results are compared with data of satellite observations. It was concluded that a significant part of the poloidal-polarized fluctuations in the Earth’s magnetosphere are oscillations with a discrete spectrum. It is shown that the proposed model, outside of which there were many unregistered properties of the magnetosphere, explains the main features of the experimentally observed generation of azimuthal small-scale fluctuations in the ULF-Earth plasma. The results can be used to interpret the measurement data from satellites and radars SuperDARN.

Keywords: Alfven modes, discrete spectrum, hot space plasma, magnetic field
References: 

1.A. V. Agapitov, A. S. Parnovskii, and O. K. Cheremnykh, “Spectrum of transversally small-scale perturbations in the inner Earth’s magnetosphere,” Kinematika Fiz. Nebesnykh Tel 22, 387–401 (2006).

2.A. V. Agapitov and O. K. Cheremnykh, “Polarization of ULF waves in the Earth’s magnetosphere,” Kinematics Phys. Celestial Bodies 27, 117–123 (2011).
https://doi.org/10.3103/S0884591311030020

3.O. S. Burdo, O. K. Cheremnykh, and O. P. Verkhoglyadova, “Study of ballooning modes in the inner magnetosphere of the Earth,” Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 1896–1900 (2000).

4.A. V. Gul’el’mi and A. R. Polyakov, “On the discreteness of Alfvén oscillation spectrum,” Geomagn. Aeron. 23, 341–343 (1983).

5.N. G. Kleimenova, L. T. Afanas’eva, O. V. Kozyreva, et al., “Gigantic geomagnetic pulsations (Pg) on the longitudinal profile of observatories,” Geomagn. Aeron. 30, 579–583 (1990).

6.D. Yu. Klimushkin, “Spatial structure of small-scale azimuthal hydrodynamic waves in an axisymmetric magnetospheric plasma with finite pressure,” Plasma Phys. Rep. 23, 858–871 (1997).

7.A. S. Leonovich, V. A. Mazur, and V. N. Senatorov, “Alfven waveguide,” J. Exp. Theor. Phys. 85, 83–85 (1983).

8.P. N. Mager and D. Yu. Klimushkin, “Generation of Alfvén waves by a plasma inhomogeneity moving in the Earth’s magnetosphere,” Plasma Phys. Rep. 33, 391–398 (2007).
https://doi.org/10.1134/S1063780X07050042

9.N. G. Mazur, E. N. Fedorov, and V. A. Pilipenko, “Dispersion relation for ballooning modes and condition of their stability in the near-earth plasma,” Geomagn. Aeron. 52, 603–612 (2012).
https://doi.org/10.1134/S0016793212050118

10.A. S. Potapov, B. Tsegmed, and L. V. Ryzhakova, “Relationship between the fluxes of relativistic electrons at geosynchronous orbit and the level of ULF activity on the Earth’s surface and in the solar wind during the 23rd solar activity cycle,” Cosmic Res. 50, 124–140 (2012).
https://doi.org/10.1134/S0010952512020086

11.O. K. Cheremnykh and V. V. Danilova, “Transversal small-scale MHD perturbations in space plasma with magnetic surfaces,” Kinematics Phys. Celestial Bodies 27, 98–108 (2011).
https://doi.org/10.3103/S0884591311020036

12.O. K. Cheremnykh, D. Yu. Klimushkin, and D. V. Kostarev, “On the structure of azimuthally small-scale ULF oscillations of hot space plasma in a curved magnetic field. Modes with continuous spectrum,” Kinematics Phys. Celestial Bodies 30, 209–222 (2014).
https://doi.org/10.3103/S088459131405002X

13.A. V. Agapitov and O. K. Cheremnykh, “Natural oscillations of the Earth magnetosphere associated with solar wind sudden impulses,” Ukr. Phys. J. 53, 506–510 (2008).

14.A. V. Agapitov and O. K. Cheremnykh, “Magnetospheric ULF waves driven by external sources,” Adv. Astron. Space Phys. 3, 12–19 (2013).

15.Zh. N. Andrushchenko, O. K. Cheremnykh, and J. W. Edenstrasser, “Global Alfvén eigenmodes in a stellarator with trapped energetic particles,” Phys. Plasmas 6, 2462–2471 (1999). doi 10.1063/1.873518
https://doi.org/10.1063/1.873518

16.K. Appert, R. Gruber, F. Troyon, and J. Vaclavik, “Excitation of global eigenmodes of the Alfven-wave in Tokamaks,” Plasma Phys. 24, 1147–1159 (1982). doi 1088/0032-1028/24/9/010
https://doi.org/10.1088/0032-1028/24/9/010

17.O. K. Cheremnykh, “Transversally small-scale perturbations in arbitrary plasma configurations with magnetic surfaces,” Plasma Phys. Controlled Fusion 52, 095006 (2010). doi 10.1088/0741-3335/52/9/095006
https://doi.org/10.1088/0741-3335/52/9/095006

18.O. K. Cheremnykh and A. S. Parnowski, “Flute and ballooning modes in the inner magnetosphere of the Earth: Stability and influence of the ionospheric conductivity,” in Space Science: New Research, Ed. by N. S. Maravell, (Nova Sci., New York, 2006), pp. 71–108.

19.O. K. Cheremnykh and A. S. Parnowski, “Influence of ionospheric conductivity on the ballooning modes in the inner magnetosphere of the Earth,” Adv. Space Res. 37, 599–603 (2006). doi 10.1016/j.asr.2005.01.073
https://doi.org/10.1016/j.asr.2005.01.073

20.O. K. Cheremnykh and S. M. Revenchuk, “Dispersion relations for the Suydam problem,” Plasma Phys. Controlled Fusion 34, 55–75 (1992). doi 10.1088/0741-3335/34/1/004
https://doi.org/10.1088/0741-3335/34/1/004

21.O. K. Cheremnykh, S. M. Revenchuk, A. Ya. Omel’chenko, and O. S. Burdo, “Theory of quasiflute modes in toroidal plasma configurations,” Phys. Scr. 51, 263–276 (1995). doi 10.1088/0031-8949/51/2/016
https://doi.org/10.1088/0031-8949/51/2/016

22.P. J. Chi and G. Le, “Observations of magnetospheric high-m poloidal waves by ST-5 satellites in low Earth orbit during geomagnetically quiet times,” J. Geophys. Res.: Space Phys. 120, 4776–4783 (2015). doi 10.1002/2015JA021145
https://doi.org/10.1002/2015JA021145

23.G. Chisham, I. R. Mann, and D. Orr, “A statistical study of giant pulsation latitudinal polarization and amplitude variation,” J. Geophys. Res.: Space Phys. 102, 9619–9630 (1997). doi 10.1029/97JA00325
https://doi.org/10.1029/97JA00325

24.G. Chisham, D. Orr, and T. K. Yeoman, “Observations of a giant pulsation across an extended array of ground magnetometers and on auroral radar,” Planet. Space Sci. 40, 953–964 (1992). doi 10.1016/0032-0633(92)90135-B
https://doi.org/10.1016/0032-0633(92)90135-B

25.R. Gramm, K.-H. Glassmeier, C. Othmer, et al., “A case study of a radially polarized Pc4 event observed by the Equator-S satellite,” Ann. Geophys. 18, 411–415 (2000). doi 10.1007/s00585-000-0411-5
https://doi.org/10.1007/s00585-000-0411-5

26.L. Dai, K. Takahashi, R. Lysak, et al., “Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study,” J. Geophys. Res.: Space Phys. 120, 4748–4762 (2015). doi 10.1002/2015JA021134
https://doi.org/10.1002/2015JA021134

27.R. E. Denton, M. R. Lessard, and L. M. Kistler, “Radial localization of magnetospheric guided poloidal Pc 4-5 waves,” J. Geophys. Res.: Space Phys. 108, 1105 (2003). doi 10.1029/2002JA009679
https://doi.org/10.1029/2002JA009679

28.R. E. Denton and G. Vetoulis, “Global poloidal mode,” J. Geophys. Res.: Space Phys. 103, 6729–6739 (1998). doi 10.1029/97JA03594
https://doi.org/10.1029/97JA03594

29.I. S. Dmitrienko, “Evolution of FMS and Alfven waves produced by the initial disturbance in the FMS waveguide,” J. Plasma Phys. 79, 7–17 (2013). doi 10.1017/S0022377812000608
https://doi.org/10.1017/S0022377812000608

30.I. S. Dmitrienko and V. A. Mazur, “The spatial structure of quasicircular Alfvén modes of waveguide at the plasmapause: interpretation of Pc1 pulsations,” Planet. Space Sci. 40, 139–148 (1992). doi 10.1016/0032-0633(92)90156-I
https://doi.org/10.1016/0032-0633(92)90156-I

31.M. J. Engebretson, D. L. Murr, K. N. Erickson, et al., “The spatial extent of radial magnetic pulsation events observed in the dayside near synchronous orbit,” J. Geophys. Res.: Space Phys. 97, 13741–13758 (1992). doi 10.1029/92JA00992
https://doi.org/10.1029/92JA00992

32.F. R. Fenrich and J. C. Samson, “Growth and decay of field line resonances,” J. Geophys. Res.: Space Phys. 102, 20031–20040 (1997). doi 10.1029/97JA01376
https://doi.org/10.1029/97JA01376

33.F. R. Fenrich, J. C. Samson, G. Sofko, et al., “ULF high-and low-m field line resonances observed with the Super Dual Auroral Radar Network,” J. Geophys. Res.: Space Phys. 100, 21535–21548 (1995). doi 10.1029/95JA02024
https://doi.org/10.1029/95JA02024

34.K.-H. Glassmeier, “Magnetometer array observations of a giant pulsation event,” J. Geophys. 48, 127–138 (1980).

35.C. A. Green, “Observations of Pg pulsations in the Northern Auroral zone and at lower latitude conjugate regions,” Planet. Space Sci. 27, 63–77 (1979). doi 10.1016/0032-0633(79)90148-X
https://doi.org/10.1016/0032-0633(79)90148-X

36.W. J. Hughes, R. L. McPherron, and C. T. Russell, “Multiple satellite observations of pulsation resonance structure in the magnetosphere,” J. Geophys. Res. 82, 492–498 (1977). doi 10.1029/JA082i004p00492
https://doi.org/10.1029/JA082i004p00492

37.D. Yu. Klimushkin, “Resonators for hydromagnetic waves in the magnetosphere,” J. Geophys. Res.: Space Phys. 103, 2369–2375 (1998). doi 10.1029/97JA02193
https://doi.org/10.1029/97JA02193

38.D. Yu. Klimushkin, “Spatial structure and dispersion of drift mirror waves coupled with Alfvén waves in a 1-D inhomogeneous plasma,” Ann. Geophys. 24, 2291–2297 (2006). doi 10.5194/angeo-24-2291-2006
https://doi.org/10.5194/angeo-24-2291-2006

39.D. Yu. Klimushkin and L. Chen, “Eigenmode stability analysis of drift-mirror modes in nonuniform plasmas,” Ann. Geophys. 24, 2435–2439 (2006). doi 10.5194/angeo-24-2435-2006
https://doi.org/10.5194/angeo-24-2435-2006

40.D. Yu. Klimushkin and P. N. Mager, “Spatial structure and stability of coupled Alfvén and drift compressional modes in non-uniform magnetosphere: Gyrokinetic treatment,” Planet. Space Sci. 59, 1613–1620 (2011). doi 10.1016/j.pss.2011.07.010
https://doi.org/10.1016/j.pss.2011.07.010

41.D. Yu. Klimushkin and P. N. Mager, “The Alfvén mode gyrokinetic equation in finite-pressure magnetospheric plasma,” J. Geophys. Res.: Space Phys. 120, 4465–4474 (2015). doi 10.1002/2015JA021045
https://doi.org/10.1002/2015JA021045

42.D. Yu. Klimushkin, P. N. Mager, and K.-H. Glassmeier, “Toroidal and poloidal Alfvén waves with arbitrary azimuthal wavenumbers in a finite pressure plasma in the Earth’s magnetosphere,” Ann. Geophys. 22, 267–288 (2004). doi 10.5194/angeo-22-267-2004
https://doi.org/10.5194/angeo-22-267-2004

43.D. Yu. Klimushkin, P. N. Mager, and K.-H. Glassmeier, “Spatio-temporal structure of Alfvén waves excited by a sudden impulse localized on an L-shell,” Ann. Geophys. 30, 1099–1106 (2012). doi 10.5194/angeo-30-1099-2012
https://doi.org/10.5194/angeo-30-1099-2012

44.D. A. Kozlov, N. G. Mazur, V. A. Pilipenko, and E. N. Fedorov, “Dispersion equation for ballooning modes in two-component plasma,” J. Plasma Phys. 80, 379–393 (2014). doi 10.1017/S0022377813001347
https://doi.org/10.1017/S0022377813001347

45.A. S. Leonovich, D. Yu. Klimushkin, and P. N. Mager, “Experimental evidence for the existence of monochromatic transverse small-scale standing Alfvén waves with spatially dependent polarization,” J. Geophys. Res. 120, 5443–5454 (2015). doi 10.1002/2015JA021044
https://doi.org/10.1002/2015JA021044

46.A. S. Leonovich and D. A. Kozlov, “Magnetosonic resonances in the magnetospheric plasma,” Earth, Planets Space 65, 368–384 (2013). doi 10.5047/eps.2012.07.002
https://doi.org/10.5047/eps.2012.07.002

47.A. S. Leonovich and V. A. Mazur, “A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere,” Planet. Space Sci. 41, 697–717 (1993). doi 10.1016/0032-0633(93)90055-7
https://doi.org/10.1016/0032-0633(93)90055-7

48.A. S. Leonovich and V. A. Mazur, “Magnetospheric resonator for transverse-small-scale standing Alfvén waves,” Planet. Space Sci. 43, 881–883 (1995). doi 10.1016/0032-0633(94)00206-7
https://doi.org/10.1016/0032-0633(94)00206-7

49.A. S. Leonovich and V. A. Mazur, “Standing Alfvén waves with m 1 in an axisymmetric magnetosphere excited by a non-stationary source,” Ann. Geophys. 16, 914–920 (1998). doi 10.1007/s00585-998-0914-z

50.W. Liu, J. B. Cao, X. Li, et al., “Poloidal ULF wave observed in the plasmasphere boundary layer,” J. Geophys. Res.: Space Phys. 118 (2013). doi 10.1002/jgra.50427

51.W. Liu, T. E. Sarris, X. Li, et al., “Spatial structure and temporal evolution of a dayside poloidal ULF wave event,” Geophys. Res. Lett. 38, L19104 (2011). doi 10.1029/2011GL049476

52.P. N. Mager and D. Yu. Klimushkin, “Giant pulsations as modes of a transverse Alfvénic resonator on the plasmapause,” Earth, Planets Space 65, 397–409 (2013). doi 10.5047/eps.2012.10.002
https://doi.org/10.5047/eps.2012.10.002

53.F. W. Menk and C. L. Waters, Magnetoseismology: Ground-Based Remote Sensing of Earth’s Magnetosphere (Wiley, Weinheim, 2013). doi 10.1002/978352765205110.1002/9783527652051
https://doi.org/10.1002/9783527652051

54.O. S. Mikhailova, “The spatial structure of ULF-waves in the equatorial resonator localized at the plasmapause with the admixture of the heavy ions,” J. Atmos. Sol.-Terr. Phys. 108, 10–16 (2014). doi 10.1016/j.jastp.2013.12.007
https://doi.org/10.1016/j.jastp.2013.12.007

55.G. Rostoker, H.-L. Lam, and J. V. Olson, “PC 4 giant pulsations in the morning sector,” J. Geophys. Res.: Space Phys. 84, 5153–5166 (1979). doi 10.1029/JA084iA09p05153
https://doi.org/10.1029/JA084iA09p05153

56.O. Saka, K. Hayashi, and A. S. Leonovich, “Ionospheric loop currents and associated ULF oscillations at geosynchronous altitudes during preonset intervals of substorm aurora,” J. Geophys. Res.: Space Phys. 120, 2460–2468 (2015). doi 10.1002/2014JA020842
https://doi.org/10.1002/2014JA020842

57.J. C. Samson, D. D. Wallis, T. J. Hughes, et al., “Substorm intensifications and field line resonances in the nightside magnetosphere,” J. Geophys. Res.: Space Phys. 97, 8495–8518 (1992). doi 10.1029/91JA03156
https://doi.org/10.1029/91JA03156

58.S. Schäfer, K.-H. Glassmeier, P. T. I. Eriksson, et al., “Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere: A CLUSTER case study,” Ann. Geophys. 25, 1011–1024 (2007). doi 10.5194/angeo-25-1011-2007
https://doi.org/10.5194/angeo-25-1011-2007

59.S. Schäfer, K.-H. Glassmeier, P. T. I. Eriksson, et al., “Spatio-temporal structure of a poloidal Alfvén wave detected by Cluster adjacent to the dayside plasmapause,” Ann. Geophys. 26, 1805–1817 (2008). doi 10.5194/angeo-26-1805-2008
https://doi.org/10.5194/angeo-26-1805-2008

60.H. J. Singer, W. J. Hughes, and C. T. Russell, “Standing hydromagnetic waves observed by ISEE 1 and 2: Radial extent and harmonic,” J. Geophys. Res.: Space Phys. 87, 3519–3529 (1982). doi 10.1029/JA087iA05p03519
https://doi.org/10.1029/JA087iA05p03519

61.K. Takahashi and B. J. Anderson, “Distribution of ULF energy (ƒ < 80 mHz) in the inner magnetosphere: A statistical analysis of AMPTE CCE magnetic field data,” J. Geophys. Res.: Space Phys. 97, 10751–10769 (1992). doi 10.1029/92JA00328
https://doi.org/10.1029/92JA00328

62.K. Takahashi, K.-H. Glassmeier, V. Angelopoulos, et al., “Multisatellite observations of a giant pulsation event,” J. Geophys. Res.: Space Phys. 116, A11223 (2011). doi 10.1029/2011JA016955

63.G. Vetoulis and L. Chen, “Global structures of Alfvén-ballooning modes in magnetospheric plasmas,” Geophys. Res. Lett. 21, 2091–2094 (1994). doi 10.1029/94GL01703
https://doi.org/10.1029/94GL01703

64.T. K. Yeoman, M. James, P. N. Mager, and D. Yu. Klimushkin, “SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory,” J. Geophys. Res.: Space Phys. 117, A06231 (2012). doi 10.1029/2012JA017668

65.N. A. Zolotukhina, P. N. Mager, and D. Yu. Klimushkin, “Pc5 waves generated by substorm injection: A case study,” Ann. Geophys. 26, 2053–2059 (2008). doi 10.5194/angeo-26-2053-2008
https://doi.org/10.5194/angeo-26-2053-2008