The effect of solar wind high-speed streams on the galactic cosmic rays intensity

Heading: 
1Kolesnyk, YL, 1Klyuyeva, AI, 1Shakhov, BA, 1Fedorov, YI
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(6):3-19
Start Page: Space Physics
Language: Russian
Abstract: 

The effect of high-speed recurrent solar wind streams from coronal holes on the intensity of the galactic cosmic rays has been investigated. The distribution of galactic cosmic rays for various solar cycle phases was considered on the basis of data of neutron monitor world network. In the framework of inhomogeneous model which includes homogeneous background and regions of high-speed streams, the transport equation solution has been obtained and the effect of high-speed streams on the galactic cosmic ray spatial distribution has been evaluated. It is shown that theoretical calculations is confirmed with experimental results that have been obtained for 2000—2014 years if to apply assumptions regarding the mean free path of cosmic rays in the corresponding period of high-speed streams.

Keywords: coronal holes, galactic cosmic rays, solar wind
References: 

1.A. A. Abunin, “Connection of the Forbush effect’s value with internal and external parameters,” in Proc. 10th Baksan Youth School of Experimental and Theoretical Physics, Prielbrusye, October 18–25, 2009 (MIFI, Moscow, 2010), Vol. 2, pp. 74–81.

2.A. A. Abunin, Candidate’s Dissertation in Mathematics and Physics (IZMIRAN, Moscow, 2014).

3.H. Bateman and A. Erdélyi, Higher Transcendential Functions (McGraw-Hill, New York, 1953, Nauka, Moscow, 1965).

4.A. V. Belov, E. A. Eroshenko, V. A. Oleneva, A. B. Struminsky, and V. G. Yanke, “What determines the magnitude of Forbush decreases?” Izv. Ross. Akad. Nauk, Ser. Fiz. 65, 373–376 (2001).

5.A. Z. Dolginov and I. N. Toptygin, “Multiple scattering of particles in a magnetic field with random inhomogeneities,” JETP 24, 1195–1202 (1967).

6.A. Z. Dolginov and I. N. Toptygin, “Diffusion of cosmic rays in the interplanetary medium,” Geomagn. Aeron. 7, 967–973 (1967).

7.L. I. Dorman, Cosmic Ray Variations (Gostekhteorizdat, Moscow, 1957; Ohio Air Force Base, Washington, DC, 1957).

8.L. I. Dorman, Cosmic Rays: Variations and Space Explorations (Akad. Nauk. SSSR, Moscow, 1963; North-Holland, Amsterdam, 1974).

9.L. I. Dorman, M. E. Kats, and B. A. Shakhov, “On connection between different forms of the cosmic ray diffusion equation,” Geomagn. Aeron. 16, 919–920 (1976).

10.Yu. I. Yermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev, “Catalog of large-scale solar wind phenomena during 1976–2000,” Cosmic Res. 47, 81–94 (2009).
https://doi.org/10.1134/S0010952509020014

11.I. A. Zhitnik, R. K. Zhigalkin, A. P. Ignat’ev, et al., “Investigation of solar formations using complex observations from the Earth and onboard the CORONAS-F Satellite: IV. Coronal holes, open magnetic pipes and their relation to high-speed streams of solar wind,” Izv. Krym. Astrofiz. Obs. 69, 128–145 (2005).

12.G. F. Krymskii, A. I. Kuz’min, P. A. Krivoshapkin, et al., Cosmic Rays and Solar Wind (Nauka, Novosibirsk, 1981) [in Russian].

13.G. F. Krymskii, A. I. Kuz’min, N. R. Chirkov, et al., “Distribution of solar rays and receiving vectors of detectors. I,” Geomagn. Aeron. 6, 991–996 (1966).

14.I. N. Toptygin, Solar Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983) [in Russian].

15.Yu. I. Fedorov, “Modulation of galactic cosmic ray intensity in the turbulent heliosphere,” Kinematics Phys. Celestial Bodies 31, 105–118 (2015).
https://doi.org/10.3103/S0884591315030034

16.A. Hundhausen, Coronal Expansion and Solar Wind (Springer-Verlag, Berlin, 1972; Mir, Moscow, 1976).

17.A. M. Altukhov, G. F. Krymsky, and A. I. Kuzmin, “The method of “global survey” for investigating cosmic ray modulation,” in Proc. 11th Int. Conf. on Cosmic Rays, Budapest, Aug. 25–Sept. 4, 1969, Ed. by A. Somogyi, Vol. 4: Muons and Neutrinos, Techniques, in Ser. Acta Physica, Vol. 29, Suppl., p. 457.

18.Badruddin, “Cosmic ray modulation: effects of high-speed solar wind streams,” Astrophys. Space Sci. 246, 171–191 (1997).
https://doi.org/10.1007/BF00645638

19.Badruddin. “Transient perturbations and their effects in the heliosphere, the geo-magnetosphere, and the Earth’s atmosphere: Space weather perspective,” J. Astrophys. Astron. 27, 209–217 (2006).

20.R. S. Badruddin, R. S. Yadav, and N. R. Yadav, “Influence of magnetic clouds on cosmic ray intensity variation,” Sol. Phys. 105, 413–428 (1986).

21.A. V. Belov, “Large-scale modulation: View from the Earth,” Space Sci. Rev. 93, 71–105 (2000).
https://doi.org/10.1023/A:1026584109817

22.A. V. Belov and E. A. Eroshenko, “Cosmic ray observations for space weather,” in Proc. 22nd ISTC Japan Workshop on Space Weather Forecast, Nagoya, June 5–6, 2002, Ed. by Y. Muraki (Nagoya Univ., Nagoya, 2002), pp. 129–146.

23.A. V. Belov, “Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena,” Proc. Int. Astron. Union 4 (s257), 439–450 (2008).
https://doi.org/10.1017/S1743921309029676

24.A. V. Belov, E. A. Eroshenko, V. A. Oleneva, and V. G. Yanke, “Relation of the Forbush effects to the interplanetary and geomagnetic parameters,” in Proc. 27th Int. Cosmic Ray Conf. (ICRC 2001), Hamburg, Aug. 8–15, 2001 (Copernicus, Göttingen, 2001), Vol. 9, pp. 3352–3355.

25.G. M. Boezio, P. Carlson, T. Francke, et al., “The cosmic-ray proton and helium spectra between 0.4 and 200 GV,” Astrophys. J. 518, 457–472 (1999).
https://doi.org/10.1086/307251

26.H. V. Cane, “Cosmic ray decreases and magnetic clouds,” J. Geophys. Res.: Space Phys. 98, 3509–3512 (1993).
https://doi.org/10.1029/92JA02479

27.H. V. Cane, I. G. Richardson, and T. T. von Rosenvinge, “Cosmic ray decreases: 1964–1994,” J. Geophys. Res.: Space Phys. 101, 21561–21572 (1996).
https://doi.org/10.1029/96JA01964

28.H. V. Cane, “Coronal mass ejections and Forbush decreases,” Space Sci. Rev. 93, 55–77 (2000).
https://doi.org/10.1023/A:1026532125747

29.H. V. Cane, I. G. Richardson, and T. T. von Rosenvinge, “Cosmic ray decreases and particle acceleration in 1978–1982 and the associated solar wind structures,” J. Geophys. Res.: Space Phys. 98, 13295–13302 (1993).
https://doi.org/10.1029/93JA00955

30.L. I. Dorman, M. E. Katz, Yu. I. Fedorov, and B. A. Shakhov, “Variations of cosmic-ray energy in interplanetary space,” Astrophys. Space Sci. 94, 43–95 (1983).
https://doi.org/10.1007/BF00651760

31.L. J. Gleeson and W. I. Axford, “Solar modulation of galactic cosmic rays,” Astrophys. J. 154, 1011–1026 (1968).
https://doi.org/10.1086/149822

32.N. Iucci, M. Parisi, M. Storini, and G. Villoresi, “Forbush decreases: Origin and development in the interplanetary space,” Nuovo Cimento Soc. Ital. Fis., C 2, 1–52 (1979).
https://doi.org/10.1007/BF02507712

33.N. Iucci, M. Parisi, M. Storini, and G. Villoresi, “Interplanetary disturbances during Forbush decreases,” Nuovo Cimento Soc. Ital. Fis., C 7, 467–488 (1984).
https://doi.org/10.1007/BF02574584

34.Yu. L. Kolesnik and B. A. Shakhov, “Effect of the heliosheath and standing termination shock on galactic cosmic ray propagation in a stationary heliosphere model,” Kinematics Phys. Celestial Bodies 28, 261–269 (2012).
https://doi.org/10.3103/S0884591312060049

35.Yu. L. Kolesnyk and B. A. Shakhov, “Galactic cosmic ray distribution in the simplest model of termination shock near the heliospheric boundaries,” Kinematics Phys. Celestial Bodies 25, 213–219 (2009).
https://doi.org/10.3103/S0884591309040072

36.K. Kudela, M. Storini, M. Y. Hofer, and A. V. Belov, “Cosmic rays in relation to space weather,” Space Sci. Rev. 93, 153 (2000).
https://doi.org/10.1023/A:1026540327564

37.B. A. Lindblad and H. Lundstedt, “A catalogue of high-speed plasma streams in the solar wind,” Sol. Phys. 74, 197–206 (1981).
https://doi.org/10.1007/BF00151290

38.B. A. Lindblad and H. Lundstedt, “A catalogue of high-speed plasma streams in the solar wind 1975–78,” Sol. Phys. 88, 377–382 (1983).
https://doi.org/10.1007/BF00196200

39.B. A. Lindblad, H. Lundstedt, and B. Larsson, “A third catalogue of high-speed plasma streams in the solar wind — data for 1978–1982,” Sol. Phys. 120, 145–152 (1989).
https://doi.org/10.1007/BF00148540

40.J. A. Lockwood, “Forbush decreases in the cosmic radiation,” Space Sci. Rev. 12, 658–715 (1971). doi 10.1007/BF00173346
https://doi.org/10.1007/BF00173346

41.H. Mavromichalaki and A. Vassilaki, “Fast plasma streams recorded near the Earth during 1985–1996,” Sol. Phys. 183, 181–200 (1998).
https://doi.org/10.1023/A:1005004328071

42.H. Mavromichalaki, A. Vassilaki, and E. Marmatsouri, “A catalogue of high-speed solar-wind streams: Further evidence of their relationship to Ap-index,” Sol. Phys. 115, 345–365 (1988).
https://doi.org/10.1007/BF00148733

43.S. Mori, “Theoretical calculation of the cosmic-ray solar diurnal variation. II — Meson component,” Nuovo Cimento Soc. Ital. Fis., B 58, 58–70 (1968).
https://doi.org/10.1007/BF02711779

44.E. N. Parker, “The passage of energetic charged particles through interplanetary space,” Planet. Space Sci. 13, 9–49 (1965).
https://doi.org/10.1016/0032-0633(65)90131-5

45.G. D. Parker, “Solar wind disturbances and recurrent modulation of galactic cosmic rays,” J. Geophys. Res.: Space Phys. 81, 3825–3833 (1976).
https://doi.org/10.1029/JA081i022p03825

46.M. S. Potgieter, “Solar modulation of cosmic rays,” Living Rev. Sol. Phys. 10, 3–66 (2013).
https://doi.org/10.12942/lrsp-2013-3

47.M. S. Potgieter, “Very local interstellar spectra for galactic electrons, protons and helium,” Braz. J. Phys. 44, 581–588 (2014).
https://doi.org/10.1007/s13538-014-0238-2

48.M. S. Potgieter, E. E. Vos, M. Boezio, N. De Simone, V. Di Felice, and V. Formato, “Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009,” Sol. Phys. 289, 391–406 (2013).
https://doi.org/10.1007/s11207-013-0324-6

49.V. S. Ptuskin, H. J. Völk, V. N. Zirakashvili, and D. Breitschwerdt, “Transport of relativistic nucleons in a galactic wind driven by cosmic rays,” Astron. Astrophys. 321, 434–443 (1997).

50.B. A. Shakhov and Yu. L. Kolesnik, “Heliospheric propagation of galactic cosmic rays depending on the scattering characteristics of the turbulent interplanetary magnetic field,” Kinematics Phys. Celestial Bodies 24, 280–292 (2008).
https://doi.org/10.3103/S0884591308060032

51.B. A. Shakhov and Yu. L. Kolesnyk, “Effect of the heliopause and the termination shock on the galactic cosmic rays distribution in stationary model of heliosphere,” J. Phys.: Conf. Ser. 409, 012154 (2013).

52.J. A. Simpson, “Cosmic-radiation intensity-time variations and their origin. III. The origin of 27-day variations,” Phys. Rev. 94, 426–440 (1954).
https://doi.org/10.1103/PhysRev.94.426

53.I. H. Urch and L. J. Gleeson, “Galactic cosmic ray modulation from 1965–1970,” Astrophys. Space Sci. 17, 426–446 (1972).
https://doi.org/10.1007/BF00642912

54.D. Venkatesan, A. K. Shukla, and S. P. Agrawal, “Cosmic ray intensity variations and two types of high speed solar streams,” Sol. Phys. 81, 375–381 (1982).
https://doi.org/10.1007/BF00151310

55.H. J. Vershell, R. B. Mendall, S. A. Korff, and E. C. Roelof, “Two classes of cosmic ray decrease,” J. Geophys. Res. 80, 1189–1201 (1975).
https://doi.org/10.1029/JA080i010p01189

56.W. R. Webber, P. R. Hiegbie, and F. B. McDonald, “The unfolding of the spectra of low energy galactic cosmic ray H and He nuclei as the Voyager 1 spacecraft exits the region of heliospheric modulation” (2013).
https://arxiv.org/abs/1308.1895.

57.W. R. Webber and F. B. McDonald, “Recent Voyager 1 data indicate that on 25 August 2012 at a distance of 121.7 AU from the Sun, sudden and unprecedented intensity changes were observed in anomalous and galactic cosmic rays,” Geophys. Res. Lett. 40, 1665–1668 (2013).
https://doi.org/10.1002/grl.50383

58.G. Xystouris, E. Sigala, and H. Mavromichalaki, “A complete catalogue of high-speed solar wind streams during solar cycle 23,” Sol. Phys. 289, 995–1012.

59.R. S. Yadav, N. K. Sharma, and Badruddin, “Effects of two types of solar wind streams on intensity variations of cosmic rays,” Sol. Phys. 151, 393–396 (1994).
https://doi.org/10.1007/BF00679085