Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies

1Sobolenko, M, 1Berczik, P, 2Spurzem, R, 3Kupi, G
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2University of Heidelberg, Heidelberg, Germany
3Rochester Institute of Technology, New-York, USA
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(1):21-37
https://doi.org/10.15407/kfnt2017.01.021
Start Page: Extragalactic Astronomy
Language: Russian
Abstract: 

We present the results of theoretical modeling of supermassive black hole binary (SMBHB) mergers using direct 2 -body simulations with a Hermite integration scheme. The BH’s gravitational interaction is described based on the post-Newtonian (𝒫𝒩 terms) approximation up to the 3.5𝒫𝒩 terms. We carry out a large set of runs using a parametric description of SMBHB orbits. The final time of the SMBHs gravitational coalescence is parametrized as a function of initial eccentricity and mass ratio q of the binary. We carry out detailed tests of our coding. We tested our PN terms against the analytic prescription described at the theoretical works in middle 60th. The gravitational radiation polarization amplitudes and from the SMBHBs merging process are also analyzed. Based on our numerical work we estimate the expected merging time for a list of selected potential SDSS SMBHBs. Our results show that the merging time is a strong function of the assumed initial eccentricities and fall within the range of thousands years.

Keywords: black hole, mergers, theoretical 2-body modeling
References: 

1. Amaro-Seoane P., Sesana A., HoffmanL., etal. Triplets of supermassive black holes: astrophysics, gravitational waves and deieciion // Mon. Notic. Roy. Astron. Soc.— 2010.—402.—P. 2308—2320.
https://doi.org/10.1111/j.1365-2966.2009.16104.x

2. Amaro-Seoane P., Spurzem R. The loss-cone probtem in dense nuclei // Mon. Notic. Roy. Astron. Soc.—2001.—327.—P. 995—1003.
https://doi.org/10.1046/j.1365-8711.2001.04799.x

3. Barton E. J., Geller M. J., Kenyon S. J. Tidally triggered star formation in close pairs of galaxies // Astrophys. J.—2000.—530.—P. 660—679.
https://doi.org/10.1086/308392

4. Begelman M. C., Blandford R. D., Rees M. J. Massive black hole binaries in active galactic nuclei // Nature.—1980.—287.—P. 307—309.
https://doi.org/10.1038/287307a0

5. BellE. F., Naab T., McIntosh D. H., et al. Dry mergers in GEMS: The dynamical evolution of massive early-type galaxies // Astrophys. J.—2006.—640.— P. 241—251.
https://doi.org/10.1086/499931

6. Berczik P., Merritt D., Spurzem R., et al. Efficient merger of binary supermassive black holes in nonaxisymmetric galaxies // Astrophys. J.—2006.—642.—P. 21—24.
https://doi.org/10.1086/504426

7. Berczik P., Nitadori K., Zhong S., et al. High performance massively parallel direct N-body simulations on large GPU clusters // Inter. conf. “High Performance Computing”, Kyiv, Ukraine, October 8—10, 2011. — Kyiv, 2011.—P. 8—18.

8. Berczik P., Spurzem R., Wang L. Up to 700k GPU cores, Kepler, and the Exascale future for simulations of star clusters around black holes // Third International Conference “High Performance Computing” (HPC-UA 2013), Kyiv, Ukraine, October 7—17,2013. — Kyiv, 2013.—P. 52—59.
https://doi.org/10.1007/978-3-642-38750-0_2

9. Berentzen I., Preto M., Berczik P., et al. Binary black hole merger in galactic nuclei: Post-Newtonian simulations // Astrophys. J.—2009.—695.—P. 455—468.
https://doi.org/10.1088/0004-637X/695/1/455

10. Blanchet L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries // Liv. Revs Relativ.—2006.—9.—114 p.
https://doi.org/10.12942/lrr-2006-4

11. Blanchet L., Faye G., Ponsot B. Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order // Phys. Rev. D.—1998.—58, N 12.—20 p.
https://doi.org/10.1103/PhysRevD.58.124002

12. Brem P. Effects of general relativity in direct N-body codes: Master’s thesis. — Heidelberg: Astronomisches Rechen-Institut, 2011.—85 p.

13. Brem P., Amaro-Seoane P., Spurzem R. Relativistic mergers of compact binaries in clusters: the fingerprint of the spin // Mon. Notic. Roy. Astron. Soc.—2013.—434. —P. 2999—3007.
https://doi.org/10.1093/mnras/stt1220

14. Bridge C. R., Appleton P. N., Conselice C. J., et al. The role of galaxy interactions and mergers in star formation at z = 1.3: Mid-infrared properties in the Spitzer first look survey // Astrophys. J.—2007.—659.—P. 931—940.
https://doi.org/10.1086/512029

15. Choi E., Naab T., Ostriker J. P., et al. Consequences of mechanical and radiative feedback from black holes in disc galaxy mergers // Mon. Notic. Roy. Astron. Soc.—2014. —42.—P. 440—453.
https://doi.org/10.1093/mnras/stu874

16. Cutler C. Angular resolution of the LISA gravitational wave detector // Phys. Rev. D.—1998.—57.—P. 7089—7102.
https://doi.org/10.1103/PhysRevD.57.7089

17. Damour T. Gravitational radiation and the motion of compact bodies // Lecture Notes in Physics. — Berlin: Springer Verlag, 1983.—P. 59—144.

18. Damour T., Deruelle N. Generalized lagrangian of two point masses in the post-Newtonian approximation of general-relativity // Comptes rendus de l’Academie des Sci. Ser. II.—1981.—293.—P. 537—540.

19. Damour T., Deruelle N. Radiation reaction and angular momentum loss in small angle gravitational scattering // Phys. Lett. A.—1981.—87.— P.81—84.
https://doi.org/10.1016/0375-9601(81)90567-3

20. Damour T., Deruelle N. The two-body problem and radiation damping in general - relativity // Comptes rendus de l’Academie des Sci. Ser. II.—1982.—294.—P. 1355—1357.

21. Damour T., Jaranowski P., Schäfer G. Equival ence between the ADM Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries // Phys. Rev. D.—2001.—63 (4).—11 p.
https://doi.org/10.1103/PhysRevD.63.044021

22. Damour T., Schäfer G. Lagrangians for n point masses at the second post-Newtonian approximation of general relativity // Gen. Relativity and Gravitation.—1985.— 17.—P. 879—905.
https://doi.org/10.1007/BF00773685

23. de Andrade V. C., Blanchet L., Faye G. Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic coordinate and ADM-Hamiltonian formalisms // Clastical and Quantum Gravity.— 2001.—18.—P. 753—778.
https://doi.org/10.1088/0264-9381/18/5/301

24. Deruelle N. Sur les équations du mouvement et le rayonnement gravitationnel d’un système binaire en Relativité Générale: PhD thesis. — Paris: Université Pierre et Marie Curie, 1982.

25. Di Matteo P., Bournaud F., Martig M., et al. On the frequency, intensity, and duration of starburst episodes triggered by galaxy interactions and mergers // Astron. and Astrophys.—2008.—492.—P. 31—49.
https://doi.org/10.1051/0004-6361:200809480

26. Faye G., Blanchet L., Buonanno A. Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion // Phys. Rev. D.—2006.—74, N 10.—19 p.
https://doi.org/10.1103/PhysRevD.74.104033

27. Frank J. Rees M. J. Effects of massive central black holes on dense stellar systems // Mon. Notic. Roy. Astron. Soc.—1976.—176.—P. 633—647.
https://doi.org/10.1093/mnras/176.3.633

28. Governato F., Brook C., Mayer L., et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows // Nature.—2010.—463.—P. 203—206.
https://doi.org/10.1038/nature08640

29. Gualandris A., Merritt D. Long-term evolution of massive black hole binaries. IV. Mergers of galaxies with collisionally relaxed nuclei // Astrophys. J.—2012.— 744, N 1.—21 p.
https://doi.org/10.1088/0004-637X/744/1/74

30. Gültekin K., RichstoneD. O., GebhardtK., et al. The M-sigma and M-L relations in galactic bulges, and determinations of their intrinsic scatter // Astrophys. J.—2009.— 698.—P. 198—221.
https://doi.org/10.1088/0004-637X/698/1/198

31. Haehnelt M. G., Kauffmann G. Multiple supermassive black holes in galactic bulges // Mon. Notic. Roy. Astron. Soc.—2002.—336.—P. 61—64.
https://doi.org/10.1046/j.1365-8711.2002.06056.x

32. Hénon M. H. The Monte Carlo method // Astrophys. and Space Sci.—1971.—14, N 1.—P. 151—167.
https://doi.org/10.1007/BF00649201

33. Hewitson M., Consortium eLISA. eLISA: A mission to study the entire universe with gravitational waves // Amer. Astron. Soc. Meeting Abstracts.—2014.—223.— P. 248.

34. Hirschmann M., Somerville R. S., Naab T., et al. Origin of the antihierarchical growth of black holes // Mon. Notic. Roy. Astron. Soc.—2012.—426.—P. 237—257.
https://doi.org/10.1111/j.1365-2966.2012.21626.x

35. Ju W., Greene J. E., Rafkov R. R., et al. Search for supermassive black hole binaries in the Sloan Digital Sky Survey spectroscopic sample // Astrophys. J.—2013.—777.—16 p.
https://doi.org/10.1088/0004-637X/777/1/44

36. Kauffmann G., HaehneltM. A unified model for the evolution of galaxies and quasars // Mon. Notic. Roy. Astron. Soc.—2000.—311.—P. 576—588.
https://doi.org/10.1046/j.1365-8711.2000.03077.x

37. Khan F. M., Berentzen I., Berczik P., et al. Formation and hardening of supermassive black hole binaries in minor mergers of disk galaxtes // Astrophys. J.—2012.— 756.—10 p.
https://doi.org/10.1088/0004-637X/756/1/30

38. Khan F. M., Holley-Bockelmann K., Berczik P., et al. Supermassive black hole binary evolution in axisymmetric galaxtes: The final parsec probtem is not a probtem // Astrophys. J.—2013.—773.—6 p.
https://doi.org/10.1088/0004-637X/773/2/100

39. Khan F. M., Just A., Merritt D. Efficient merger of binary supermassive black holes in merging galaxies // Astrophys. J.—2011.—732.—8 p.
https://doi.org/10.1088/0004-637X/732/2/89

40. Khan F. M., Preto M., Berczik P., et al. Mergers of unequal-mass galaxtes: supermassive black hole binary evolution and structure of merger remnants // Astrophys. J.—2012.—749.—14 p.
https://doi.org/10.1088/0004-637X/749/2/147

41. Kidder L. E. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects // Phys. Rev. D.—1995.—52.—P. 821—847.
https://doi.org/10.1103/PhysRevD.52.821

42. Komossa S. Observational evidence for supermassive black hole binaries // AIP Conf. Proc.—2003.—686.—P. 161—174.—(The astrophysics of gravitational wave sources / Ed. J. M. Centrella).
https://doi.org/10.1063/1.1629428

43. Kupi G., Amaro-Seoane P., Spurzem R. Dynamics of compact object clusters: a post-Newtonian study // Mon. Notic. Roy. Astron. Soc.—2006.—371.—P. 45—49.
https://doi.org/10.1111/j.1745-3933.2006.00205.x

44. Lin L., Cooper M. C., Jian H.-Y., et al. Where do wet, dry, and mixed galaxy mergers occur? A study of the environments of close galaxy pairs in the DEEP2 galaxy red-shift survey // Astrophys. J.—2010.—718.—P. 1158—1170.
https://doi.org/10.1088/0004-637X/718/2/1158

45. Lin L., Koo D. C., Weiner B. J., et al. AEGIS: Enhancement of dust-enshrouded star formation in close galaxy pairs and merging galaxies up to z ~ 1 // Astrophys. J.— 2007.—660.—P. 51—54.
https://doi.org/10.1086/517919

46. Lin L., Patton D. R., Koo D. C., et al. The redshift evolution of wet, dry, and mixed galaxy mergers from close galaxy pairs in the DEEP2 galaxy redshift survey // Astrophys. J.—2008.—681.—P. 232—243.
https://doi.org/10.1086/587928

47. Liu F. K., Li S., Komossa S. A milliparsec supermassive black hole binary candidate in the galaxy SDSS J120136.02 + 300305.5 // Astrophys. J.—2014.—786.—14 p.
https://doi.org/10.1088/0004-637X/786/2/103

48. Mayer L., Kazantzidis S., Escala A., et al. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers // Nature.—2010.—466.—P. 1082— 1084.
https://doi.org/10.1038/nature09294

49. Merritt D. Brownian motion of a massive binary // Astrophys. J.—2001.—556.—P. 245—264.
https://doi.org/10.1086/321550

50. Merritt D., Milosavljević M. Massive black hole binary evolution // Liv. Revs Relativity.—2005.—8.—63 p.
https://doi.org/10.12942/lrr-2005-8

51. Milosavljević M., Merritt D. Formation of gatactic nuclei // Astrophys. J.—2001.—563.—P. 34—62.
https://doi.org/10.1086/323830

52. Milosavljević M., Merritt D. The final parsec problem // AIP Conf. Proc.—2003.—686.—P. 201—210.—(The astrophysics of gravitational wave sources / Ed. J. M. Centrella).
https://doi.org/10.1063/1.1629432

53. Nitadori K., Makino J. Sixth- and eighth-order Hermite integrator for N-body simulations // New Astronomy.—2008.—13.—P. 498—507.
https://doi.org/10.1016/j.newast.2008.01.010

54. Ohta T., Okamura H., Kimura T., et al. Physically acceptable solution of Einstein’s equation for many-body system // Progr. Theor. Phys.—1973.— 50.—P. 492—514.
https://doi.org/10.1143/PTP.50.492

55. Ohta T., Okamura H., Kimura T., et al. Coordinate condition and higher order gravitational potential in canonical formalism // Progr. Theor. Phys.—1974.—51.— P. 1598—1612.
https://doi.org/10.1143/PTP.51.1598

56. Ohta T., Okamura H., Kimura T., et al. Higher order gravitational potential for manybody system // Progr. Theor. Phys.—1974.—51.—P. 1220—1238.
https://doi.org/10.1143/PTP.51.1220

57. Overzier R. A., Heckman T. M., Kauffmann G., et al. Hubble space telescope morphologies of local Lyman break galaxy analogs. I. Evidence for starbursts triggered by merging // Astrophys. J.—2008.—677.—P. 37—62.
https://doi.org/10.1086/529134

58. Peters P. C. Gravitational radiation and the motion of two point masses // Phys. Rev.—1964.—136.—P. 1224—1232.
https://doi.org/10.1103/PhysRev.136.B1224

59. Peters P. C., Mathews J. Gravitational radiation from point masses in a Keplerian orbit // Phys. Rev.—1963.—131.—P. 435—440.
https://doi.org/10.1103/PhysRev.131.435

60. Preto M., Berentzen I., Berczik P., et al. Fast coalescence of massive black hole binaries from mergers of galactic nuclei: Implications for lowfrequency gravitational-wave astrophysics // Astrophys. J.—2011.—732.—6 p.
https://doi.org/10.1088/2041-8205/732/2/L26

61. Rodriguez Zaurin J., Tadhunter C. N., Gonzalez Delgado R. M. The properties of the stellar populations in ULIRGs. II. Star formation histories and evolution // Mon. Notic. Roy. Astron. Soc.—2010.—403.—P. 1317—1330.
https://doi.org/10.1111/j.1365-2966.2009.16075.x

62. Sathyaprakash B. S., Schutz B. F. Physics, astrophysics and cosmology with gravitational waves // Liv. Revs Relativity.—2009.—12.—141 p.
https://doi.org/10.12942/lrr-2009-2

63. Sijacki D., Vogelsberger M., Genel S., et al. The Illustris simulation: the evolving population of black holes across cosmic time // Mon. Notic. Roy. Astron. Soc.—2015.— 452.—P. 575—596.
https://doi.org/10.1093/mnras/stv1340

64. Silk J., Rees M. J. Quasars and galaxy formation // Astron. and Astrophys.—1998.—331.—P. 1—4.

65. Soffel M. H. Relativity in astrometry, celestial mechanics and geodesy. — Berlin, Heidelberg, New York: Springer-Verlag, 1989.—208 p.
https://doi.org/10.1007/978-3-642-73406-9

66. Tagoshi H., Ohashi A., Owen B. J. Gravitational field and equations of motion of spinning compact binaries to 2.5 post-Newtonian order // Phys. Rev. D.—2001.—63, N 4.—14 p.
https://doi.org/10.1103/PhysRevD.63.044006

67. van Dokkum P. G. The recent and continuing assembly of field elliptical galaxies by red mergers // Astrophys. J.—2005.—130.—P. 2647—2665.
https://doi.org/10.1086/497593

68. WangL., Berczik P., Spurzem R., et al. The link between ejected stars, hardening and eccentricity growth of super massive black holes in galactic nuclei // Astrophys. J.—2014. —780.—14 p.
https://doi.org/10.1088/0004-637X/780/2/164

69. Yagi K., Seto N. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries // Phys. Rev. D.—2011.—83, N 4.—14 p.
https://doi.org/10.1103/PhysRevD.83.044011

70. Zhong S., Berczik P., Spurzem R. Super massive black hole in galactic nuclei with tidal disruption of stars // Astrophys. J.—2014.—792.—17 p.
https://doi.org/10.1088/0004-637X/792/2/137

71. Zinchenko I. A., Berczik P., Grebel E. K., et al. On the influence of minor mergers on the radial abundance gradient in disks of milky-way-like galaxies // Astrophys. J.—2015. —806.—17 p.
https://doi.org/10.1088/0004-637X/806/2/267