Double maxima 11-year solar cycles

1Krivodubskij, VN
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(1):55-80
Start Page: Solar Physics
Language: Russian

We propose a scenario to explain the observed phenomenon of double maxima of sunspot cycles, including the generation of the magnetic field near the bottom of the solar convection zone (SCZ) and its subsequent removal from the deep layers to the surface in the “royal zone”. Five processes are involved for reconstructing of the magnetic field: the Ω-effect, magnetic buoyancy, macroscopic turbulent diamagnetism, rotary ∇ρ-effect and meridional circulation. It was found that the reconstruction of magnetism in the high-latitude and equatorial domains of the SCZ occurs in different modes. A key role in the developed mechanism of double maxima play two waves of toroidal fields from the lower base of the SCZ bottom to the solar surface in the equatorial domain. Deep toroidal fields are excited due to the Ω-effect near tachocline at the beginning of the cycle. Then these fields are transported to the surface due to combined acting of magnetic buoyancy, macroscopic turbulent diamagnetism and rotary magnetic ∇ρ-flow in the equatorial domain. Over time these magnetic fragments can be seen as bipolar sunspot groups in the middle latitudes in the “royal zone”. This first wave of toroidal fields, which is directed up, gives the main maximum of sunspot activity. However, the underlying toroidal fields in the high-latitude polar domains at the beginning of the cycle are blocked near bottom of the SCZ by two antibuoyancy effects, directed downward turbulent diamagnetic transfer and magnetic ∇ρ-pumping. Deep meridional flow toward the equator transfers these fields to the low latitudes of the equatorial domain (where there are favourable conditions for magnetic floating) during about 1-2 years. Then “belated” magnetic fields float up /rise up to surface (second wave of toroidal field). This second portion of toroidal fields, coming to the solar surface at low latitudes, leads to second (repeated) sunspot maximum.

Keywords: 11-year solar cycles, magnetic fields, maximum of sunspot activity, toroidal fields

1.S. I. Vainshtein, Ya. B. Zel’dovich, and A. A. Ruzmaikin, The Turbulent Dynamo in Astrophysics (Nauka, Moscow, 1980) [in Russian].

2.S. I. Vainshtein, Magnetic Fields in Space (Nauka, Moscow, 1983) [in Russian].

3.Yu. I. Vitinskii, M. Konetskii, and G. V. Kuklin, Statistics of the Spot-Forming Activity of the Sun (Nauka, Moscow, 1986) [in Russian].

4.A. G. Zagorodnii and O. K. Cheremnykh, Introduction to Plasma Physics (Nauk. Dumka, Kyiv, 2014) [in Russian].

5.Ya. B. Zel’dovich, “The magnetic field in the two-dimensional motion of a conducting turbulent liquid,” J. Exp. Theor. Phys. 31, 460–462 (1957).zbMATH

6.L. L. Kichatinov, “On magnetohydrodynamics of mean fields in inhomogeneous turbulent medium,” Magn. Gidrodin., No. 3, 67–73 (1982).

7.L. V. Kozak, R. I. Kostyk, and O. K. Cheremnykh, “Two spectra of turbulence of the Sun,” Kinematics Phys. Celestial Bodies 29, 66–70 (2013).

8.A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 299–303 (1941).MathSciNet

9.V. N. Krivodubskii, “On turbulent conductivity and magnetic permeability of the solar plasma,” Soln. Dannye, No. 7, 99–109 (1982).

10.V. K. Krivodubskii, “Intensity of sources of magnetic fields of the solar alpha-omega dynamo,” Astron. Zh. 61, 540–548 (1984).

11.Yu. P. Ladikov-Roev and O. K. Cheremnykh, Mathematical Models of Continuous Media (Nauk. Dumka, Kyiv, 2010) [in Russian].

12.V. N. Obridko, “Magnetic fields and indexes of activity,” in Plama Helio-Geophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vol. 1, pp. 41–60 [in Russian].

13.A. A. Solov’ev and E. A. Kiritchek, The Diffusion Theory of Solar Magnetic Cycle (Kalmytskii Gos. Univ., Elista, 2004) [in Russian].

14.A. Antalova and M. N. Gnevyshev, “Principal characteristics of the 11-year solar activity cycle,” Sov. Astron. 9, 198–201 (1965).

15.B. Belucz, M. Dikpati, and E. Forgács-Dajka, “A Babcock–Leighton solar dynamo model with multi-cellular meridional circulation in advection-and diffusion-dominated regimes,” Astrophys. J. 806, 169 (2015).

16.E. E. Benevolenskaya, “A model of the double magnetic cycle of the Sun,” Astrophys. J. Lett. 509, L49–L52 (2003).

17.A. Brandenburg, D. Sokoloff, and K. Subramanian, “Current status of turbulent dynamo theory. From largescale to small-scale dynamos,” Space Sci. Rev. 169, 123–157 (2012).

18.D. Braun and A. Birc, “Prospects for the detection of the deep solar meridional circulation,” Astrophys. J. Lett. 689, L161–L165 (2008).

19.A. S. Brun, M. K. Browning, M. Dikpati, et al., “Recent advances on solar global magnetism and variability,” Space Sci. Rev. 196, 101–136 (2015).

20.R. Cameron, M. Dikpati, and A. Brandenburg, “The global solar dynamo” (2016).

21.R. Cameron and M. Schüssler, “The crucial role of surface magnetic fields for the solar dynamo,” Science 347, 1333–1335 (2015).

22.P. Charbonneau, “Dynamo models of the solar cycle,” Living Rev. Sol. Phys. 7 (3), 1–91 (2010).

23.A. R. Choudhuri, P. Chatterjee, and J. Jiang, “Predicting solar cycle 24 with a solar dynamo model,” Phys. Rev. Lett. 98, 131103 (2007).

24.A. R. Choudhuri, M. Schüssler, and M. Dikpati, “The solar dynamo with meridional circulation,” Astron. Astrophys. 303, L29 (1995).

25.M. Dikpati and P. A. Gilman, “Simulating and predicting solar cycles using a flux-transport dynamo,” Astrophys. J. 649, 498–514 (2006).

26.E. M. Drobyshevski, “Magnetic field transfer by two-dimensional convection and solar ‘semi-dynamo’,” Astrophys. Space Sci. 46, 41–49 (1977).

27.A. E. Dudorov, V. N. Krivodubskii, T. V. Ruzmaikina, and A. A. Ruzmaikin, “The internal large-scale magnetic field of the Sun,” Sov. Astron. 33, 420–426 (1989).

28.K. Georgieva, “Why the sunspot cycle is doubly peaked,” ISRN Astron. Astrophys., 437838 (2011).

29.K. Georgieva and B. Kirov, “Solar dynamo and geomagnetic activity,” J. Atmos. Sol.-Terr. Phys. 73, 207–222 (2011).

30.P. M. Giles, T. L. Duval, P. K. Scherrer, and R. S. Bogart, “A subsurface flow of material from the Sun’s equator to its poles,” Nature 390, 52–54 (1997).

31.L. Gizon and A. C. Birch, “Local helioseismology,” Living Rev. Sol. Phys. 2 (6), 1–75 (2005).

32.M. N. Gnevyshev, “The corona and the 11-year cycle of solar activity,” Sov. Astron. 7, 311–318 (1963).

33.M. N. Gnevyshev, “On the 11-years cycle of solar activity,” Sol. Phys. 1, 107–120 (1967).

34.M. N. Gnevyshev, “Essential features of the 11-year solar cycle,” Sol. Phys. 51, 175–183 (1977).

35.D. H. Hathaway, “Doppler measurements of the Sun’s meridional flow,” Astrophys. J. 460, 1027–1033 (1996).

36.D. H. Hathaway, “Supergranules as probes of the Sun’s meridional circulation,” Astrophys. J. 760, 84 (2012).

37.D. H. Hathaway, “The solar cycle,” Living Rev. Sol. Phys. 12 (4), 1–87 (2015).

38.D. H. Hathaway, D. Nandy, R. M. Wilson, and E. J. Reichmann, “Evidence that a deep meridional flow sets the sunspot cycle,” Astrophys. J. 589, 665–670 (2003).

39.G. Hazra, B. B. Karak, and A. R. Choudhuri, “Is a deep one-cell meridional circulation essential for the flux transport solar dynamo?,” Astrophys. J. 782, 93 (2014).

40.R. Howe, “Solar interior rotation and its variation,” Living Rev. Sol. Phys. 6 (1), 1–75 (2009).

41.R. Howe, J. Christensen-Dalsgaard, F. Hill, et al., “Dynamic variations at the base of the solar convection zone,” Science 287, 2456–2460 (2000).

42.T. S. Ivanova and A. A. Ruzmaikin, “A magnetohydrodynamic dynamo model of the solar cycle,” Sov. Astron. 20, 227–233 (1976).

43.J. Jackiewicz, A. Serebryanskiy, and S. Kholikov, “Meridional flow in the solar convection zone. II. Helioseismic inversions of GONG DATA,” Astrophys. J. 805, 133 (2015).

44.E. Jensen, “On tubes of magnetic force embedded in stellar material,” Ann. d’Astrophys. 18, 127–140 (1955).

45.J. Jiang, R. H. Cameron, and M. Schiissler, “The case of the weak solar cycle 24,” Astrophys. J. Lett. 808, L28 (2015).

46.J. Jiang, P. Chatterjee, and A. R. Choudhuri, “Solar activity forecast with a dynamo model,” Mon. Not. R. Astron. Soc. 381, 1527–1542 (2007).

47.L. L. Kitchatinov, “Turbulent transport of magnetic fields in a highly conducting rotating fluid and the solar cycle,” Astron. Astrophys. 243, 483–491 (1991).

48.L. L. Kitchatinov, “The solar dynamo: Inferences from observations and modeling,” Geomagn. Aeron. (Engl. Transl.) 54, 867–876 (2014).

49.L. L. Kitchatinov and G. Rudiger, “Magnetic-field advection in inhomogeneous turbulence,” Astron. Astrophys. 260, 494–498 (1992).

50.I. Kitiashvili and A. G. Kosovichev, “Application of data assimilation method for predicting solar cycles,” Astrophys. J. Lett. 688, L49–L52 (2008).

51.R. W. Komm, R. F. Howard, and J. Harvey, “Meridional flow of small photospheric magnetic features,” Sol. Phys. 147, 207–223 (1993).

52.M. Kopecký and G. V. Kuklin, “A few notes on the sunspot activity in dependence on the phase of the 11-year cycle and on the heliographic latitude,” Bull. Astron. Inst. Czech. 20, 22–29 (1969).

53.A. G. Kosovichev, “Probing solar and stellar interior dynamics and dynamo,” Adv. Space Res. 41, 830–837 (2008).

54.R. H. Kraichnan, “Inertial-range spectrum of hydromagnetic turbulence,” Phys. Fluids 8, 1385–1387 (1965).

55.F. Krause and K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Oxford, 1980).zbMATH

56.V. N. Krivodubskii, “Magnetic field transfer in the turbulent solar envelope,” Sov. Astron. 28, 205–211 (1984).

57.V. N. Krivodubskii, “Transfer of the large-scale solar magnetic field by inhomogeneity of the material density in the convective zone,” Sov. Astron. Lett. 13, 338–341 (1987).

58.V. N. Krivodubskii, “Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone,” Astron. Rep. 42, 122–126 (1998).

59.V. N. Krivodubskii, “The structure of the global solar magnetic field excited by the turbulent dynamo mechanism,” Astron. Rep. 45, 738–745 (2001).

60.V. N. Krivodubskij, “Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone,” Astron. Nachr. 326, 61–74 (2005).

61.V. N. Krivodubskii, “Turbulent effects of sunspot magnetic field reconstruction,” Kinematics Phys. Celestial Bodies 28, 232–238 (2012).

62.V. N. Krivodubskij, “On the extended 23rd solar cycle,” in Solar and Astrophysical Dynamos and Magnetic Activity: Proc. 294th IAU Symp., Ed. by A. G. Kosovichev; Proc. Int. Astron. Union S294, 69–70 (2013).

63.V. N. Krivodubskij and N. I. Lozitska, “Dependence of solar cycles duration on the magnitude of the annual module of the sunspots magnetic field,” Proc. Int. Astron. Union S294, 71–72 (2013).

64.V. N. Krivodubskij, “Small scale alpha-squared effect in the solar convection zone,” Kinematics Phys. Celestial Bodies 31, 55–64 (2015).

65.V. D. Kuznetsov and S. I. Syrovatskii, “The floating up of magnetic fields and the 11-year cyclicity of solar activity,” Sov. Astron. 23, 715–719 (1979).

66.V. I. Makarov, A. G. Tlatov, D. K. Callebaut, et al., “Large-scale magnetic field and sunspot cycles,” Sol. Phys. 198, 409–421 (2001).

67.M. S. Miesch and M. Dikpati, “A three-dimensional Babcock–Leighton solar dynamo model,” Astrophys. J. Lett. 785, L8 (2014).

68.F. Moreno-Insertis, “Rise times of horizontal magnetic flux tubes in the convection zone of the sun,” Astron. Astrophys. 122, 241–250 (1983).

69.A. Muñoz-Jamarillo, M. Dasi-Espuig, L. A. Balmaceda, and E. E. DeLuca, “Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies,” Astrophys. J. Lett. 767, L25 (2013).

70.D. Nandy and A. R. Choudhuri, “Explaining the latitudinal distribution of sunspots with deep meridional flow,” Science 296, 1671–1673 (2002).

71.D. Nandy, A. Muñoz-Jaramillo, and P. Martens, “The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations,” Nature 471, 80–82 (2011).

72.N. J. Nelson, B. P. Brown, A. Sacha Brun, et al., “Buoyant magnetic loops generated by global convective dynamo action,” Sol. Phys. 289, 441–458 (2014).

73.E. Nesme-Ribes, N. Meunier, and I. Vince, “Solar dynamics over cycle 19 using sunspots as tracers,” Astron. Astrophys. 321, 323–329 (1997).

74.M. Ossendrijver, “The solar dynamo,” Astron. Astrophys. Rev. 11, 287–367 (2003).

75.E. N. Parker, “The formation of sunspots from the solar toroidal field,” Astrophys. J. 121, 491–507 (1955).

76.V. V. Pipin and A. G. Kosovichev, “The mean-field solar dynamo with double cell meridional circulation pattern,” Astrophys. J. 776, 36 (2013).

77.E. P. Popova, K. A. Potemina, and N. A. Yukhina, “Double cycle of solar activity in a two-layer medium,” Geomagn. Aeron. (Engl. Transl.) 54, 877–881 (2015).

78.E. Popova, V. Zharkova, and S. Zharkov, “Probing latitudinal variations of the solar magnetic field in cycles 21–23 by Parker’s two-layer dynamo model with meridional circulation,” Ann. Geophys. 31, 2023–2028 (2013).

79.K.-H. Rädler, “Zur Elektrodynamik turbulent bewegter leitender Mediem._I. Grundzüge der Elektrodynamik der mittleren Felder,” Z. Naturforsch., A: Phys. Sci. 23, 1841–1851 (1968)

79a.K.-H. Radler, “Zur Elektrodynamik turbulent bewegter leitender Mediem. II. Turbulenzbedingte Leitfähigkeits-und Permeabilitätsänderungen,” Z. Naturforsch., A: Phys. Sci. 23, 1851–1860 (1968).

80.G. Rüdiger and R. Arlt, “Physics of the solar cycle,” in Advances in Nonlinear Dynamos, Ed. by A. Ferriz-Mas and M. Núñes (Taylor & Francis, London, 2004), in Ser. The Fluid Mechanics of Astrophysics and Geophysics, pp. 147–194.

81.A. Schad, J. Timmer, and M. Roth, “Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells,” Astrophys. J. Lett. 778, L38 (2013).

82.K. H. Schatten, P. H. Scherrer, L. Svalgaard, and J. M. Wilcox, “Using dynamo theory to predict the sunspot number during solar cycle 21,” Geophys. Rev. Lett. 5, 411–414 (1978).

83.J. Schou, H. M. Antia, S. Basu, et al., “Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager,” Astrophys. J. 505, 390–417 (1998).

84.M. Schüssler, “On buoyant magnetic flux tubes in the solar convection zone,” Astron. Astrophys. 56, 439–442 (1977).

85.H. Schwabe, “Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau,” Astron. Nachr. 21, 233–236 (1844).

86.S. J. Shepherd, S. I. Zharkov, and V. V. Zharkova, “Prediction of solar activity from solar background magnetic field variations in cycles 21–23,” Astrophys. J. 795, 46 (2014).

87.H. B. Snodgrass and S. B. Dailey, “Meridional motions of magnetic features in the solar photosphere,” Sol. Phys. 163, 21–42 (1996).

88.M. Stix, The Sun: An Introduction, 2nd ed. (Springer-Verlag, Berlin, 2002). zbMATH

89.L. Svalgaard, E. W. Cliver, and Y. Kamide, “Sunspot cycle 24: Smallest cycle in 100 years?,” Geophys. Res. Lett. 32, L01104 (2005).

90.A. Tlatov, E. Illarionov, D. Sokoloff, and V. Pipin, “A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups,” Mon. Not._R. Astron. Soc. 432, 2975–2984 (2013).

91.W. Unno and E. Ribes, “On magnetic buoyancy in the convection zone,” Astrophys. J. 208, 222–223 (1976).

92.Y.-M. Wang, N. R. Sheeley, Jr., and A. G. Nash, “A new solar cycle model including meridional circulation,” Astrophys. J. 383, 431–442 (1991).

93.Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).

94.J. Zhao, R. S. Bogart, A. G. Kosovichev, T. L. Duvall, T. Hartlep, “Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun,” Astrophys. J. Lett. 774, L29 (2013).

95.J. Zhao and A. G. Kosovichev, “Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the Sun by time-distance helioseismology,” Astrophys. J. 603, 776–784 (2004).

96.V. V. Zharkova, S. J. Shepherd, and S. I. Zharkov, “Principal component analysis of background and sunspot magnetic field variations during solar cycles 21–23,” Mon. Not. R. Astron. Soc. 424, 2943–2953 (2012).

97.S. Zharkov, E. Gavryuseva, and V. Zharkova, “The observed long-and short-term phase relation between the toroidal and poloidal magnetic fields in cycle 23,” Sol. Phys. 248, 339–358 (2008).

98.N. V. Zolotova and D. I. Ponyavin, “Impulse-like behavior of the sunspot activity,” Astron. Rep. 56, 250–255 (2012).