Modelling of H II region radiation surrounding the starburst knot taking into account the structures evolution formed by superwind

1Koshmak, IO, 1Melekh, BY
1Ivan Franko National University of Lviv, Lviv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(2):3-23
Start Page: Extragalactic Astronomy
Language: Ukrainian

The method of multicomponent photoionization modelling of H II region surrounding the star-forming region was presented. Internal structure of H II region defined by evolutionary model of superwind «bubble» from the central star-forming region. To set the radial distribution of gas density, motion velocity of gas and temperature in region of free expansion of superwind we used model by Clegg and Chevalier (1985), and in the cavity — model by Weaver et al. (1977). The chemical abundances obtained from evolutionary population synthesis modelling were used in internal components of «bubble». External components of our models describe the thin layer of high-density gas formed by shock wave of stellar superwind from surrounding gas, and «typical» H II region correspondingly. Input parameters of modelling were set from pre-calculated evolutionary models of starburst based on three types of evolutionary tracks. Calculated evolutionary grid of low-metalicity multicomponent models. Also the comparative analysis of results of calculation and observable data is represented.

Keywords: H II region, low-metalicity multicomponent models, star-forming region

1.N. G. Bochkarev and S. A. Zhekov, “X-ray emission from certain nebulae formed by stellar wind,” Astron. Zh. 67, 274–292 (1990).

2.I. O. Koshmak and B. Ya. Melekh, “Modeling the emission of an H II region containing a bubble-like structure,” Kinematics Phys. Celestial Bodies 29, 257–268 (2013).

3.I. O. Koshmak and B. Ya. Melekh, “The role of dust in modelling the H II region emission with bubble-like structure inside,” Zh. Fiz. Dosl. 17, 4901 (2013).

4.I. O. Koshmak and B. Ya. Melekh, “Multicomponent simulation of emission of low-metallicity H II regions,” Kinematics Phys. Celestial Bodies 30, 70–84 (2014).

5.B. Ya. Melekh, I. O. Koshmak, and R. V. Kozel, “The influence of stellar wind bubbles on the radiation ionizing field in the nebular objects,” Zh. Fiz. Dosl. 15, 3901 (2011).

6.B. Ya. Melekh, L. S. Pilyugin, and R. I. Korytko, “Relationship between intensities of strong emission lines in the spectra of H II regions and their chemical compositions,” Kinematics Phys. Celestial Bodies 28, 189–202 (2012).

7.J. Castor, R. McCray, and R. Weaver, “Interstellar bubbles,” Astrophys. J. 200, L107–L110 (1975).

8.R. A. Chevalier and A. W. Clegg, “Wind from a starburst nucleus,” Nature 317, 44–45 (1985).

9.J. E. Dyson and D. A. Williams, Physics of the Interstellar Medium (CRC, New York, 1997).

10.Ferland G.J. “Hazy, a brief introduction to Cloudy,” Univ. of Kentucky, Physics Department Internal Report No. 200 (2008).

11.G. Ferland, L. Binette, M. Contini, et al., The Analysis of Emission Lines, Ed. by R. Williams and M. Livio, in Ser. Space Telescope Science Institute Symposium Series, Vol. 8 (Cambridge Univ. Press, Cambridge, 1995).

12.Yu. I. Izotov and T. X. Thuan, “The primordial abundance of 4He revisited,” Astrophys. J. 500, 188–216 (1998).

13.Yu. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, “The primordial helium abundance from a new sample of metal-deficient blue compact galaxies,” Astrophys. J. 435, 647–667 (1994).

14.Yu. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, “The primordial helium abundance: Systematic effects and a new determination,” Astrophys. J., Suppl. Ser. 108, 1–39 (1997).

15.B.-C. Koo and C. F. McKee, “Dynamics of wind bubbles and superbubbles. I — Slow winds and fast winds. II — Analytic theory,” Astrophys. J. 388, 93–126 (1992).

16.R. V. Kozel and B. Ya. Melekh, “Photoionization modelling of H II region with stellar wind bubble inside,” in Proc. 16th Young Scientists’ Conf. on Astronomy and Space Physics (YSC’16), Kyiv, Ukraine, Apr. 27–May 2, 2009, Ed. by V. Ya. Choliy and G. Ivashchenko (Dep. Astron. Kosm. Fiz., Kyiv. Nats. Univ. im. T. Shevchenka, Kyiv, 2009), pp. 37–41.

17.C. Leitherer, D. Schaerer, J. D. Goaldader, et al., “Starburst99: Synthesis models for galaxies with active star formation,” Astrophys. J., Suppl. Ser. 123, 3–40 (1999).

18.J. S. Mathis, W. Rumpl, and K. H. Nordsieck, “The size distribution of interstellar grains,” Astrophys. J. 217, 425–433 (1977).

19.B. Ya. Melekh, “Two-stages optimized photoionization modelling of H II region in blue compact galaxy SBS 0335-052,” Zh. Fiz. Dosl. 13, 3901 (2009).

20.G. Mellema, “The interaction of stellar winds with their environment: Theory and modelling,” Astrophys. Space Sci. 260, 203–213 (1998).

21. Model Nebulae. Proc. of the Workshop Held at the Observatoire de Meudon, Meudon, France, July 8–19, 1985, Ed. by D. Péquignot (Obs. de Paris-Meudon, Meudon, 1986).

22.L. S. Pilyugin, E. K. Grebel, and L. Mattsson, “‘Counterpart’ method for abundance determinations in H II regions,” Mon. Not. R. Astron. Soc. 424, 2316–2329 (2012).

23.L. S. Pilyugin, E. K. Grebel, and A. Y. Kniazev, “The abundance properties of nearby late-type galaxies. I. The data,” Astrophys. J. 147, 131 (2014).

24.L. S. Pilyugin, J. M. Vilchez, and T. X. Thuan, “New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions,” Astrophys. J. 720, 1738–1751 (2010).

25.D. Schaerer and W. D. Vacca, “New models for Wolf–Rayet and O star populations in young starbursts,” Astrophys. J. 497, 618 (1998).

26.C. B. Tarter, PhD Thesis (Cornell Univ., Ithaca, NY, 1967).

27.T. X. Thuan and Yu. I. Izotov, “High-ionization emission in metal-deficient blue compact dwarf galaxies,” Astrophys. J. 161, 240–270 (2005).

28.R. Weaver, R. McCray, J. Castor, et al., “Interstellar bubbles. II. Structure and evolution,” Astrophys. J. 218, 377–395 (1977).