Influence of small-scale Bernstein turbulence on the low-frequency plasma waves in the solar chromosphere
1Kryshtal, AN, 1Voitsekhovska, AD, 1Gerasimenko, SV, 2Cheremnykh, OK 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(4):3-28 |
https://doi.org/10.15407/kfnt2017.04.003 |
Start Page: Solar Physics |
Language: Russian |
Abstract: The region of investigation in this problem is the part of current circuit of magnetic loop in solar active region in the range of the heights from 1400 up to the 2500 kilometers above the photosphere. At the earliest phase of the development of a flare process the loop's magnetic field was supposed to be stationary and uniform in the interval, which correspond to the «weak» fields (so called «Deca-hectogauss» fields). The conditions of appearance and development of instability of second harmonics of the Bernstein modes have been obtained. The main reason of this instability's development as well as low-frequency instabilities, which appear later, the subdreicer electric field in a loop has been assumed. At the same time the pair Coulomb collisions were supposed to be the main reason of all the instabilities damping. The obtained extremely low values of this instability's threshold point to the principal possibility of the next appearance of the low-frequency instabilities (and plasma waves, which correspond to them) with much more high threshold values on the background of saturated Bernstein turbulence. In the framework of such scenario the scattering frequency of electrons on the pulsations of this Bernstein turbulence exceeds, as a rule, the frequency of pair Coulomb (basically the ion-electron one) collisions. In the process of obtaining and investigation of the dispersion relation for low-frequency waves the weak spatial inhomogeneity of plasma temperature and density together with existence of large-scale quasi-static subdreicer field have been taken into account. It has been shown that solutions of obtained dispersion relation in case, when pair Coulomb collisions dominate in plasma as well as in the case, when electron momentum losses on the pulsations of Bernstein saturated turbulence dominate, are the «morphologically» similar and differ only by the values of the perturbation parameters. In both these cases all the solutions correspond to the only two «families» of the waves, namely to the kinetic Alfven waves (KAW) and to the kinetic ion-acoustic waves (KIAW). These waves have their own electric fields and they can play very important role in the process of preflare acceleration of energetic electrons. |
Keywords: Alfven waves, Bernstein turbulence, chromosphere, the Sun |
1.A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1989) [in Russian].
2.H. Bateman, MHD Instabilities (MIT Press, Cambridge, 1978; Energoizdat, Moscow, 1982).
3.A. A. Galeev, D. G. Lominadze, A. D. Pataraya, et al., “Anomalous plasma resistance due to instability at cyclotron harmonics,” JETP Lett. 15, 294–296 (1972).
4.A. A. Galeev and R. Sagdeev, “Nonlinear plasma theory,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Energoatomizdat, Moscow, 1973; Consultants Bureau, New York, 1979), Vol. 7.
5.S. I. Gopasyuk, “Structure and dynamics of the magnetic field in active regions on the Sun,” Itogi Nauki Tekh., Ser.: Astron. 34, 7–77 (1987).
6.C. de Jager, Structure and Dynamics of the Solar Atmosphere (Springer-Verlag, Berlin, 1959; Inostrannaya Literatura, Moscow, 1962).
https://doi.org/10.1007/978-3-642-45929-0_2
7.A. G. Zagorodnii and O. K. Cheremnykh, Introduction to Plasma Physics (Naukova Dumka, Kyiv, 2014) [in Russian].
8.V. V. Zaitsev, A. V. Stepanov, and Yu. T. Tsap, “On the problems of physics of solar and stellar flares,” Kinematika Fiz. Nebesnykh Tel 10 (6), 3–31 (1994).
9.B. B. Kadomtsev, Collective Phenomena in Plasmas (Nauka, Moscow, 1988) [in Russian].
10.B. B. Kadomtsev and O. P. Pogutse, “Turbulence in toroidal systems,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Energoatomizdat, Moscow, 1967; Springer-Verlag, New York, 1995), Vol. 5, pp. 249–400.
https://doi.org/10.1007/978-1-4615-7793-5_2
11.A. N. Krishtal’, “Low-frequency instabilities of plasma waves in a magnetized collisional plasma with longitudinal electric field and density inhomogeneity,” Radiofiz. Radioastron. 8 (1), 5–20 (2003).MathSciNet
12.A. N. Kryshtal, A. D. Voitsekhovska, S. V. Gerasimenko, and M. V. Sidorenko, “On the possibility of the development of longitudinal wave instabilities on the background of the small-scale Bernstein turbulence in preflare chromosphere of a solar active region,” Kinematics Phys. Celestial Bodies 30, 234–243 (2014).
https://doi.org/10.3103/S0884591314050043
13.A. N. Krishtal’, and S. V. Gerasimenko, “Dispersion of the waves in magnetoactive plasma with sub-Dreicer electric field and strong density inhomogeneity in arch structures,” Kinematika Fiz. Nebesnykh Tel 18, 258–272 (2002).
14.A. N. Kryshtal, S. V. Gerasimenko, A. D. Voitsekhovska, and O. K. Cheremnykh, “One type of three-wave interaction of low-frequency waves in magnetoactive plasma of the solar atmosphere,” Kinematics Phys. Celestial Bodies 30, 147–154 (2014).
https://doi.org/10.3103/S0884591314030052
15.A. B. Mikhailovskii, “Oscillations of an inhomogenous plasma,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Energoatomizdat, Moscow, 1963; Springer-Verlag, New York, 1967), Vol. 3, pp. 159–227.
https://doi.org/10.1007/978-1-4615-7799-7_2
16.A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma (Atomizdat, Moscow, 1975; Springer-Verlag, New York, 2013).
17.A. P. Mishina and I. V. Proskuryakov, Higher Algebra: Linear Algebra, Polynomials, General Algebra (GIFML, Moscow, 1962; Pergamon, Oxford, 1965).
18. Basic Plasma Physics, Ed. by A. A. Galeev and R. Sudan (Energoatomizdat, Moscow, 1983), Vol. 1 [in Russian].
19. Basic Plasma Physics, Ed. by A. A. Galeev and R. Sudan (Energoatomizdat, Moscow, 1984), Vol. 2 [in Russian].
20.A. I. Podgornyi and I. M. Podgornyi, “Numerical simulation of a solar flare produced by the emergence of new magnetic flux,” Astron. Rep. 45, 60–66 (2001).
https://doi.org/10.1134/1.1336602
21.E. R. Priest, Solar Magnetohydrodynamics (Springer-Verlag, Dordrecht, 1982; Mir, Moscow, 1985).
https://doi.org/10.1007/978-94-009-7958-1
22.B. P. Filippov, Eruptive Processes on the Sun (Fizmatlit, Moscow, 2007) [in Russian].
23.F. Chen, Introduction to Plasma Physics (Springer, New York, 1974; Mir, Moscow, 1987).
https://doi.org/10.1007/978-1-4757-0459-4_1
24.G. P. Chernov, V. V. Fomichev, and R. A. Sych, “New results of studies of zebra structure in solar radio emission,” in Proc. 11th Conf. Plasma Physics in the Solar System, Moscow, Feb. 15–19, 2016 (Inst. Kosm. Issl. Ross. Akad. Nauk., Moscow, 2016), p. 24.
25.A. N. Shabalin and Yu. E. Charikov, “Generation of hard x-ray radiation by accelerated electrons in the turbulent plasma of solar flares,” in Proc. 11th Conf. Plasma Physics in the Solar System, Moscow, Feb. 15–19, 2016 (Inst. Kosm. Issl. Ross. Akad. Nauk., Moscow, 2016), p. 25.
26.T. Anan, R. Casini, and K. Ichimoto, “Diagnosis of magnetic and electric fields of chromospheric jets through spectropolarimetric observations of H I Paschen lines,” Astrophys. J. 786, 94 (2014).
https://doi.org/10.1088/0004-637X/786/2/94
27.M. J. Aschwanden, “An evaluation of coronal heating models for active regions based on Yohkoh, SOHO, and TRACE observations,” Astrophys. J. 560, 1035–1043 (2001).
https://doi.org/10.1086/323064
28.M. J. Aschwanden, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd ed. (Praxis, Chichester, 2005).
29.M. L. Bendict, A. Shanmugaraju, and B. Vrsnak, “Investigation of X-class flare-associated coronal mass ejections with and without DH Type II radio bursts,” Sol. Phys. 290, 3365–3377 (2015).
https://doi.org/10.1007/s11207-015-0811-z
30.S. G. Benka, “DC-electric fields in solar flares; Theory meets observation,” in Proc. Kofu Symp.: New Look at the Sun with Emphasis on Advanced Observations of Corona Dynamics and Flares, Kofu, Sept. 6–10, 1993, Ed. by S. Enome and T. Hirayama, (Nobeyama Radio Observatory, Minamisaku, 1994), pp. 225–229.
31.R. Casini and E. Landi Degl’Innocenti, “The polarized spectrum of hydrogen in the presence of electric and magnetic fields,” Astron. Astrophys. 276, 289–302 (1993).
32.J. M. Fontenla, E. H. Avrett, and R. Loeser, “Energy balance in the solar transition region. III — Helium emission in hydrostatic, constant-abundance models with diffusion,” Astrophys. J. 406, 319–345 (1993).
https://doi.org/10.1086/172443
33.P. Foukal, and S. Hinata, “Electric fields in the solar atmosphere: A review,” Sol. Phys. 132, 307–334 (1991).
https://doi.org/10.1007/BF00152291
34.A. A. Galeev, D. G. Lominadze, A. D. Pataraya, et al., “Anomalous plasma resistance due to instability at cyclotron harmonics,” JETP Lett. 15, 294–296 (1972).
35.L. K. Harra, S. A. Matthews, and J. L. Culhane, “Nonthermal velocity evolution in the precursor phase of a solar flare,” Astrophys. J. Lett. 549, L245–L248 (2001).
https://doi.org/10.1086/319163
36.A. Hasegawa, and L. Chen, “Parametric decay of "kinetic Alfven wave” and its application to plasma heating,” Phys. Rev. Lett. 36, 1362–1365 (1976).
https://doi.org/10.1103/PhysRevLett.36.1362
37.H. S. Hudson, “Chromospheric Flares,” in The Physics of Chromospheric Plasmas: Proc. Coimbra Solar Physics Meeting, Coimbra, Portugal, Oct. 9–13, 2006, Ed. by P. Heinzel, I. Dorotovic, and R. J. Rutten. (Astron. Soc. Pac.,2007), in Ser.: ASP Conference Series, Vol. 368, pp. 365–386 (2007).
38.L. K. Kashapova, N. S. Meshalkina, and M. S. Kisil, “Detection of acceleration processes during the initial phase of the 12 June 2010 flare,” Sol. Phys. 280, 525–535 (2012).
https://doi.org/10.1007/s11207-012-0080-z
39.A. N. Kryshtal, “Low-frequency wave instabilities in a plasma with a quasistatic electric field and weak spatial inhomogeneity,” J. Plasma Phys. 68, 137–148 (2002).
https://doi.org/10.1017/S0022377802001769
40.A. N. Kryshtal, “Low-frequency wave instabilities in magnetoactive plasma with spatial inhomogeneity of temperature,” J. Plasma Phys. 71, 729–745 (2005).
https://doi.org/10.1017/S0022377805003855
41.A. N. Kryshtal, V. Fedun, S. V. Gerasimenko, and A. D. Voitsekhovska, “Oblique Bernstein mode generation near the upper-hybrid frequency in solar pre-flare plasmas,” Sol. Phys. 290, 3331–3341 (2015).
https://doi.org/10.1007/s11207-015-0793-x
42.A. N. Kryshtal and S. V. Gerasimenko, “Kinetic Alfven waves in preflare plasma,” Astron. Nachr. 326, 52–60 (2005).
https://doi.org/10.1002/asna.200310336
43.A. N. Kryshtal, S. V. Gerasimenko, and A. D. Voitsekhovska, “"Oblique” Bernstein modes in solar preflare plasma: Generation of second harmonics,” Adv. Space Res. 49, 791–796 (2012).
https://doi.org/10.1016/j.asr.2011.11.024
44.A. Kryshtal, S. Gerasimenko, and A. Voitsekhovska, “Small-scale Langmuir wave instability in preflare chromosphere of solar active region,” Astrophys. Space Sci. 349, 637–646 (2014).
https://doi.org/10.1007/s10509-013-1665-1
45.A. Kryshtal, S. Gerasimenko, A. Voitsekhovska, and V. Fedun, “The ion-acoustic instability in the pre-flare plasma near the loop footpoints at solar active regions,” Ann. Geophys. 31, 2193–2200 (2013).
https://doi.org/10.5194/angeo-31-2193-2013
46.M. E. Machado, E. H. Avrett, J. E. Vernazza, and R. W. Noyes, “Semiempirical models of chromospheric flare regions,” Astrophys. J. 242, 336–351 (1980).
https://doi.org/10.1086/158467
47.I. A. Miller, P. I. Cargil, A. G. Emslie, et al., “Critical issues for understanding particle acceleration in impulsive solar flares,” J. Geophys. Res.: Space Phys. 102, 14631–14659 (1997).
https://doi.org/10.1029/97JA00976
48.E. I. Schmahl, D. K. Webb, B. Woodgate, et al., “Coronal manifestations of preflare activity,” in Energetic Phenomena on the Sun, Ed. by M. Kundu and B. Woodgate (NASA, Washington, DC, 1986), pp. 1–48–1-79.
49.S. K. Solanki, “Small-scale solar magnetic fields: An overview,” Space Sci. Rev. 63, 1–188 (1993).
https://doi.org/10.1007/BF00749277
50.J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-sun,” Astrophys. J., Suppl. Ser. 45, 635–725 (1981).
https://doi.org/10.1086/190731
51.A. J. Willes and P. A. Robinson, “Electron-cyclotron maser theory for noninteger ratio emission frequencies in solar microwave spike bursts,” Astrophys. J. 467, 465–472 (1996).
https://doi.org/10.1086/177620
52.V. V. Zharkova, L. K. Kashapova, S. N. Chornogor, and O. V. Andrienko, “The effect of energetic particle beams on the chromospheric emission of the 2004 July 25 flare,” Mon. Not. R. Astron. Soc. 411, 1562–1574 (2011).
https://doi.org/10.1111/j.1365-2966.2010.17792.x