Center-to-limb variation of the continuum intensity and linear polarization of stars with transiting exoplanets

1Shchukina, NG, 2Trujillo, B, 1Vasilieva, IE, 3Frantseva, KV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Instituto de Astrofisica de Canarias, Tenerife, Spain
3Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(4):29-50
https://doi.org/10.15407/kfnt2017.04.029
Start Page: Physics of Stars and Interstellar Medium
Language: Russian
Abstract: 

The limb darkening and the center-to-limb variation of the continuum polarization is calculated for a grid of one-dimensional stellar model atmospheres and for a wavelength range between 300 nm — 950 nm. Model parameters match those of the transiting stars taken from the NASA exoplanet archive. The limb darkening of the continuum radiation for these stars is shown to decrease with their effective temperature. For the λ 370 nm wavelength, which corresponds to the maximum of the Johnson-Cousins UX filter, the limb darkering of the transiting stars are enclosed in a range between 0.03 and 0.3. In contrast, the continuum linear polarization depends not only on the effective temperature of the star, but also on its gravity and metallicity. Its value decreases for increasing values of these parameters. At the UX band maximum the linear polarization of stars with transiting planets amounts to about 4 %, while the minimum value is about 0.3 %. The continuum limb darkening and the linear polarization decreases rapidly with wavelength. At the R band maximum (λ = 700 nm) the linear polarization close to the limb is in fact two orders of magnitude smaller than in the UX band. The center-to-limb variation of the continuum intensity and the linear polarization of the stars with transiting planets can be approximated, respectively, by polynomials of fourth and sixth degree. The coefficients of the polynomials, as well as the IDL procedures for reading them, are available in electronic form. It is shown that there are two classes of stars with high linear polarization at the limb. The first one consists of cold dwarfs. Their typical representatives are HATS-6, Kepler-45, as well as all the stars with similar parameters. The second class of stars includes hotter giants and subgiants. Among them we have CoRoT-28, Kepler-91 and the group of stars with effective temperatures and gravities around 5000 K and 3.5, respectively.

Keywords: limb darkening, polarization, transiting stars
References: 

1.C. W. Allen, Astrophysical Quantities (Athlone, London, 1973; Mir, Moscow, 1977).

2.V. V. Sobolev, Course in Theoretical Astrophysics (Nauka, Moscow, 1967; NASA, Washington, DC, 1969).

3.J. M. Almenara, F. Bouchy, P. Gaulme, et al., “Transiting exoplanets from the CoRoT space mission. XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets,” Astron. Astrophys. 555, A118 (2013).
https://doi.org/10.1051/0004-6361/201321462

4.S. V. Berdyugina, A. V. Berdyugin, D. M. Fluri, and V. Piirola, “First detection of polarized scattered light from an exoplanetary atmosphere,” Astrophys. J. Lett. 673, L83 (2008).
https://doi.org/10.1086/527320

5.S. V. Berdyugina, A. V. Berdyugin, D. M. Fluri, and V. Piirola, “Polarized reflected light from the exoplanet HD189733B: First multicolor observations and confirmation of detection,” Astrophys. J. Lett. 728, L6 (2011).
https://doi.org/10.1088/2041-8205/728/1/L6

6.M. S. Bessel, “UBVRI passbands,” Publ. Astron. Soc. Pac. 102, 1181–1199 (1990).
https://doi.org/10.1086/132749

7.A. Bonfanti, S. Ortolani, and V. Nascimbeni, “Age consistency between exoplanet hosts and field stars,” Astron. Astrophys. 585, A5 (2016).
https://doi.org/10.1051/0004-6361/201527297

8.W. J. Borucki, D. G. Koch, G. Basri, et al., “Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data,” Astrophys. J. 736, 19 (2011).

9.F. Bouchy, S. Udry, M. Mayor, et al., “ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733,” Astron. Astrophys. 444, L15–L19 (2005).
https://doi.org/10.1051/0004-6361:200500201

10.J. H. M. J. Bruls, “The formation of helioseismology lines. IV — The NI I 676.8 NM intercombination line,” Astron. Astrophys. 269, 509–517 (1993).

11.L. A. Buchhave, D. W. Latham, J. A. Carter, et al., “Kepler-14b: A massive hot Jupiter transiting an F star in a close visual binary,” Astrophys. J., Suppl. Ser. 197, 3–10 (2011).

12.K. A. Burlov-Vasiljev, E. A. Gurtovenko, and Yu. B. Matvejev, “New absolute measurements of the solar spectrum 310–685 nm,” Sol. Phys. 157, 51–73 (1995).
https://doi.org/10.1007/BF00680609

13.K. A. Burlov-Vasiljev, Yu. B. Matvejev, and I. E. Vasiljeva, “New measurements of the solar disk-center spectral intensity in the near IR from 645 nm to 1070 nm,” Sol. Phys. 177, 25–40 (1998).
https://doi.org/10.1007/978-94-011-5000-2_3

14.J. Cabrera, Sz. Csizmadia, G. Montagnier, et al., “Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit,” Astron. Astrophys. 579, A36 (2015).
https://doi.org/10.1051/0004-6361/201424501

15.A. C. Carciofi and A. M. Magalhães, “The polarization signature of extrasolar planet transiting cool dwarfs,” Astrophys. J. 635, 570–577 (2005).
https://doi.org/10.1086/497064

16.L. Casagrande, R. Schönrich, M. Asplund, et al., “New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s). Improved astrophysical parameters for the Geneva–Copenhagen Survey,” Astron. Astrophys. 530, A138 (2011).
https://doi.org/10.1051/0004-6361/201016276

17.S. Chandrasekhar, “On the radiative equilibrium of a stellar atmosphere. X,” Astrophys. J. 103, 351–370 (1946).MathSciNet
https://doi.org/10.1086/144816

18.A. Claret, “A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for–5.0 <= log[M/H] <= +1, 2000 K <= Teff <= 50000 K at several surface gravities,” Astron. Astrophys. 363, 1081–1190 (2000).

19.A. D. Code, “Radiative equilibrium in an atmosphere in which pure scattering and pure absorption both play a role,” Astrophys. J. 112, 22–24 (1950).MathSciNet
https://doi.org/10.1086/145317

20.M. Feldt, M. Turatto, H. M. Schmid, et al., “"Planet Finder” instrument for the ESO VLT,” in Proc. Towards Other Earths — DARWIN/TPF and the Search for Extrasolar Terrestrial Planets, Heidelberg, Germany. Apr. 22–25, 2003, Ed. by M. Fridlund and T. Henning (Eur. Space Agency, Noordwijk, 2003), pp. 99–107.

21.A. D. Fluri, J. O. Stenflo, “Continuum polarization in the solar spectrum,” Astrophys. J. 341, 902–911 (1999).

22.K. Frantseva, N. M. Kostogryz, and T. M. Yakobchuk, “Simulation of polarimetric effects in planetary system HD 189733,” Adv. Astron. Space Phys. 2, 146–148 (2012).

23.K. Fuhrmann, “Nearby stars of the Galactic disc and halo — IV,” Mon. Not. R. Astron. Soc. 384, 173–224 (2008).
https://doi.org/10.1111/j.1365-2966.2007.12671.x

24.L. Ghezzi, K. Cunha, V. V. Smith, et al., “Stellar parameters and metallicities of stars hosting Jovian and Neptunian mass planets: A possible dependence of planetary mass on metallicity,” Astrophys. J. 720, 1290–1302 (2010).
https://doi.org/10.1088/0004-637X/720/2/1290

25.G. Gonzalez, M. K. Carlson, and R. W. Tobin, “Parent stars of extrasolar planets — X. Lithium abundances and v sin i revisited,” Mon. Not. R. Astron. Soc. 403, 1368–1380 (2010).
https://doi.org/10.1111/j.1365-2966.2009.16195.x

26.R. O. Gray, C. J. Corbally, R. F. Garrison, et al., “Contributions to the nearby stars (NSTARS) project: Spectroscopy of stars earlier than M0 within 40 parsecs: The northern sample. I,” Astron. J. 126, 2048–2059 (2003).
https://doi.org/10.1086/378365

27.J. P. Harrington, “The intrinsic polarization of Mira Variables,” Astrophys. Lett. 3, 165–168 (1969).

28.J. P. Harrington, “Polarization of radiation from stellar atmospheres. The grey case,” Astrophys. Space Sci. 8, 227–242 (1970).
https://doi.org/10.1007/BF00650885

29.J. D. Hartman, D. Bayliss, R. Brahm, et al., “HATS-6b: A warm Saturn transiting an early M dwarf star, and a set of empirical relations for characterizing K and M dwarf planet hosts,” Astron. J. 149, 166 (2015).
https://doi.org/10.1088/0004-6256/149/5/166

30.W. Hayek, D. Sing, F Pont, and M. Asplund, “Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations,” Astron. Astrophys. 539, A102 (2012).
https://doi.org/10.1051/0004-6361/201117868

31.J. Hough, “Polarimetry: A powerful diagnostic tool in astronomy,” Astron. Geophys. 47, 3.31–3.35 (2006).
https://doi.org/10.1111/j.1468-4004.2006.47331.x

32.J. H. Hough, P. W. Lucas, J. A. Bailey, et al., “PlanetPol: A very high sensitivity polarimeter,” Publ. Astron. Soc. Pac. 118, 1302–1318 (2006).
https://doi.org/10.1086/507955

33.D. Huber, V. Silva Aguirre, J. M. Matthews, et al., “Revised stellar properties of Kepler targets for the quarter 1-16 transit detection run,” Astrophys. J., Suppl. Ser. 211, 2 (2014).
https://doi.org/10.1088/0067-0049/211/1/2

34.J. C. Kemp, G. D. Henson, C. T. Steiner, and E. R. Powell, “The optical polarization of the Sun measured at a sensitivity of parts in ten million,” Nature 326, 270–273 (1987).
https://doi.org/10.1038/326270a0

35.N. M. Kostogryz and S. V. Berdyugina, “Center-to-limb polarization in continuum spectra of F, G, K stars,” Astron. Astrophys. 575, A89–A97 (2015).
https://doi.org/10.1051/0004-6361/201424844

36.N. M. Kostogryz, T. M. Yakobchuk, and S. V. Berdyugina, “Polarization in exoplanetary systems caused by transits, grazing transits, and starspots,” Astrophys. J. 806, 97 (2015).
https://doi.org/10.1088/0004-637X/806/1/97

37.N. M. Kostogryz, T. M. Yakobchuk, O. V. Morozhenko, and A. P. Vid’machenko, “Polarimetric study of transiting extrasolar planets,” Mon. Not. R. Astron. Soc. 415, 695–700 (2011).
https://doi.org/10.1111/j.1365-2966.2011.18746.x

38.R. L. Kurucz, ATLAS9 Stellar Atmospheres Programs and 2 km/s Grid, Kurucz CD-ROM No. 13 (Smithson. Astrophys. Obs., Cambridge, MA, 1993).

39.K. R. Lang, Astrophysical Formulae (Springer-Verlag, Berlin, 1974), Ch. 9.
https://doi.org/10.1007/978-3-662-11188-8

40.J. Lillo-Box, D. Barrado, A. Moya, et al., “Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations,” Astron. Astrophys. 562, A109 (2014).
https://doi.org/10.1051/0004-6361/201322001

41.P. W. Lucas, J. H. Hough, J. A. Bailey, et al., “Planetpol polarimetry of the exoplanet systems 55 Cnc and t Boo,” Mon. Not. R. Astron. Soc. 393, 229–244 (2009).
https://doi.org/10.1111/j.1365-2966.2008.14182.x

42.D. Mihalas, Stellar Atmospheres, 2nd ed. (W. H. Freeman, San Francisco, 1978).

43.E. A. Milne, in Handbuch der Astrophysik, Ed. by G. Eberhard, A. Konlschüüter, and H. Ludendorff (Springer- Verlag, Berlin, 1930), Vol. 3, Part 1, p. 145.

44.T. V. Mishenina, M. Pignatari, S. A. Korotin, et al., “Abundances of neutron-capture elements in stars of the Galactic disk substructures,” Astron. Astrophys. 552, A128 (2013).
https://doi.org/10.1051/0004-6361/201220687

45.M. H. Pinsonneault, D. An, J. Molenda-Zakowicz, et al., “A revised effective temperature scale for the Kepler input catalog,” Astrophys. J., Suppl. Ser. 199, 30 (2012).
https://doi.org/10.1088/0067-0049/199/2/30

46.I. Ramirez, J. R. Fish, and D. L. Lambert, Allende Prieto C. “Lithium abundances in nearby FGK dwarf and subgiant stars: Internal destruction, galactic chemical evolution, and exoplanets,” Astrophys. J. 756, 46 (2012).
https://doi.org/10.1088/0004-637X/756/1/46

47.J. F. Rowe, J. L. Coughlin, V. Antoci, et al., “Planetary candidates observed by Kepler. V. Planet sample from Q1–Q12 (36 months),” Astrophys. J., Suppl. Ser. 217, 16 (2015).
https://doi.org/10.1088/0067-0049/217/1/16

48.N. C. Santos, S. G. Sousa, A. Mortier, et al., “SWEET-Cat: A catalogue of parameters for stars with exoplanets. I. New atmospheric parameters and masses for 48 stars with planets,” Astron. Astrophys. 556, A150 (2013).
https://doi.org/10.1051/0004-6361/201321286

49.H. M. Schmid, D. Gisler, F. Joos, et al., “ZIMPOL/CHEOPS: A polarimetric imager for the direct detection of extra-solar planets,” in Proc. Astronomical Polarimetry: Current Status and Future Directions in Waikoloa, HI, Mar. 15–19, 2004, Ed. by A. Adamson, C. Aspin, C. J. Davis, and T. Fujiyoshi (Astron. Soc. Pac., 2005), in Ser.: ASP Conference Series, Vol. 343, pp. 89–91.

50.S. Seager, B. A. Whitney, and D. D. Sasselov, “Photometric light curves and polarization of close-in extrasolar giant planets,” Astrophys. J. 540, 504–520 (2000).
https://doi.org/10.1086/309292

51.N. G. Shchukina, K. V. Frantseva, and J. Trujillo Bueno, “The continuum polarization of stars with transiting exoplanetary systems,” Presented at WG1 Meeting: Polarimetry of Planetary Systems (COST Action MP1104 — Polarisation as a Tool to Study the Solar System and Beyond), Florence, Italy, Sept. 23–27, 2013. http://www.polarisation.eu/index.php/meetings/previous-meetings/10-meeti....

52.N. G. Shchukina, K. V. Frantseva, and J. Trujillo Bueno, “Continuum polarization of stars as a result of occultation by transiting exoplanets,” in Proc. 21th Young Scientists’ Conf. on Astronomy and Space Physics, Kyiv, Ukraine, Apr. 28–May 3, 2014 (Kyiv. Nats. Univ. im. Tarasa Shevchenka, Kyiv, 2014), p. 12. http://ysc.kiev.ua.

53.N. G. Shchukina, K. V. Frantseva, and J. Trujillo Bueno, “Continuum polarization of stars as a result of occultation by transiting exoplanets,” Presented at WG2 Meeting: Theory and Modeling of Polarisation in Astrophysics (COST Action MP1104 — Polarisation as a Tool to Study the Solar System and Beyond), Prague, Czech, May 5–8, 2014. http://www.asu.cas.cz/~wg2prague/talks.html.

54.D. K. Sing, “Stellar limb-darkening coefficients for CoRot and Kepler,” Astron. Astrophys. 510, A21 (2010).
https://doi.org/10.1051/0004-6361/200913675

55.D. K. Sing, J-M. Désert, J. J. Fortney, et al., “Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: Detection of potassium in XO-2b from narrowband spectrophotometry,” Astron. Astrophys. 527, A73 (2011).
https://doi.org/10.1051/0004-6361/201015579

56.D. K. Sing, J-M. Désert, A. Lecavelier des Etangs, et al., “Transit spectrophotometry of the exoplanet HD 189733b. I. Searching for water but finding haze with HST NICMOS,” Astron. Astrophys. 505, 891–899 (2009).
https://doi.org/10.1051/0004-6361/200912776

57.S. G. Sousa, N. C. Santos, G. Israelian, et al., “Spectroscopic parameters for a sample of metal-rich solar-type stars,” Astron. Astrophys. 458, 873–880 (2006).
https://doi.org/10.1051/0004-6361:20065658

58.D. M. Stam, J. W. Hovenier, L. B. F. M. Waters, “Using polarimetry to detect and characterize Jupiter-like extrasolar planets,” Astron. Astrophys. 428, 663–672 (2004).
https://doi.org/10.1051/0004-6361:20041578

59.J. O. Stenflo, C. U. Keller, and A. Gandorfer, “Anomalous polarization effects due to coherent scattering on the Sun,” Astron. Astrophys. 355, 789–803 (2000).

60.G. Torres, D. A. Fischer, A. Sozzetti, et al., “Improved spectroscopic parameters for transiting planet hosts,” Astrophys. J. 757, 161 (2012).
https://doi.org/10.1088/0004-637X/757/2/161

61.J. Trujillo Bueno and R. Manso Sainz, “Iterative methods for the non-LTE transfer of polarized radiation: Resonance line polarization in one-dimensional atmospheres,” Astrophys. J. 516, 436–450 (1999).
https://doi.org/10.1086/307107

62.J. Trujillo Bueno and N. G. Shchukina, “Three-dimensional radiative transfer modeling of the polarization of the Sun’s continuous spectrum,” Astrophys. J. 694, 1364–1378 (2009).
https://doi.org/10.1088/0004-637X/694/2/1364

63.S. J. Wiktorowicz, “Nondetection of polarized, scattered light from the HD 189733b hot Jupiter,” Astrophys. J. 696, 1116–1124 (2009).
https://doi.org/10.1088/0004-637X/696/2/1116

64.S. J. Wiktorowicz and K. A. Matthews, “A high-precision optical polarimeter to measure inclinations of highmass X-ray binaries,” Publ. Astron. Soc. Pac. 120, 1282–1297 (2008).
https://doi.org/10.1086/595966

65.P. A. Wilson, K. D. Colón, D. K. Sing, et al., “A search for methane in the atmosphere of GJ 1214b via GTC narrow-band transmission spectrophotometry,” Mon. Not. R. Astron. Soc. 438, 2395–2405 (2014).
https://doi.org/10.1093/mnras/stt2356

66.N. J. Wright, J. J. Drake, E. E. Mamajek, and G. W. Henry, “The stellar-activity-rotation relationship and the evolution of stellar dynamos,” Astrophys. J. 743, 48 (2011).
https://doi.org/10.1088/0004-637X/743/1/48