The peculiarities of chemical elements abundances in the atmosphere of PMMR23 – red supergiant of Small Magellanic Cloud, as a result of interstellar gas accretion

1Yushchenko, AV, 2Gopka, VF, 3Shavrina, AV, 2Yushchenko, VA, 2Vasileva, SV, 2Andrievsky, SM, 4Raikov, AA, Kim, S, 1Rittipruk, P, 1Yeuncheol, J, 1Kang, Y-W
1Astrocamp Contents Research Institute, Goyang, Republic of Korea
2Scientific Research Institute "Astronomical Observatory" of I.I.Mechnikov Odessa National University, Odesa, Ukraine
3Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Pulkovo Astronomical Observatory, Pulkovo, Russia
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(5):3-26
Start Page: Physics of Stars and Interstellar Medium
Language: Ukrainian

PMMR23 is a red supergiant located in the region of Small Magellanic Cloud with low velocities of stars and interstellar gas. The abundances of 35 chemical elements and the upper limits for Tl and U were found in the atmosphere of the star. The relative abundances of heavy elements are enhanced with respect to iron group elements by 0.6—1.0 dex. The spectra of several SMC red supergiants PMMR27, PMMR48, PMMR102, PMMR144, located in the region high velocities of stars and interstellar gas, show the emission components in the wings of hydrogen line Hα. This emission is not detected for PMMR23. We discuss the possibility of accretion of interstellar gas on the atmospheres of PMMR23 and other supergiants in Magellanic Clouds. We made the analysis of chemical composition using spectra obtained at ESO 3.6 meter telescope with spectral resolving power R=30000.

Keywords: abundances of chemical elements, accretion, red supergiant PMMR23, Small Magellanic Cloud

1.S. M. Adams, C. S. Kochanek, J. R. Gerke, K. Z. Stanek, and X. Dai, “The search for failed supernovae with the Large Binocular Telescope: Confirmation of a disappearing star,” Mon. Not. R. Astron. Soc. 468, 4968–4981 (2017).

2.P. C. Allende, D. L. Lambert, and M. Asplund, “The forbidden abundance of oxygen in the Sun,” Astrophys. J. Lett. 556, L63–L66 (2001).

3.K. Bekki, “When was the Large Magellanic Cloud accreted on to the Galaxy?,” Mon. Not. R. Astron. Soc. 416, 2359–2367 (2011).

4.J. Biemont, P. Palmeri, and P. Quinet, Database of Rare Earths at Mons University (2002). http://www.umh.

5.E. Böhm-Vitense, “The puzzle of the metallic line stars,” Publ. Astron. Soc. Pac. 118, 419–435 (2006).

6.A. Z. Bonanos, D. J. Lennon, F. Köhlinger, et al., “Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud,” Astron. J. 140, 416–429 (2010).

7.A. Z. Bonanos, D. L. Massa, M. Sewilo, et al., “Spitzer SAGE infrared photometry of massive stars in the Large Magellanic Cloud,” Astron. J. 138, 1003–1021 (2009).

8.M. L. Boyer, S. Srinivasan, J. Th. van Loon, et al., “Surveying the agents of galaxy evolution in the tidally stripped, low metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool evolved stars,” Astron. J. 142, 103 (2011).

9.F. Castelli and R. L. Kurucz, “New grids of ATLAS9 model atmospheres,” in Modelling of Stellar Atmospheres: Proc. 210th IAU Symp., Uppsala, Sweden, June 17–21, 2002, Ed. by N. Piskunov, W. W. Weiss, and D. F. Gray (Astron. Soc. Pac., San Francisco, CA, 2003), poster A20.

10.L. Delbouille, G. Roland, and L. Neven, Photometric Atlas of the Solar Spectrum from λ 3000 to λ 10000 (Inst. d’Astrophis. de l’Univ. de Lillge, Cointe-Ougree, Belgium, 1973). Magnetic tape copy.

11.E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the Sun and three metal-poor stars,” Astrophys. J. Suppl. Ser. 148, 543–566 (2003).

12.J. H. Elias, J. A. Frogel, and R. A. Humphreys, “M supergiants in the Milky Way and the Magellanic Clouds: Colors, spectral types, and luminosities,” Astrophys. J. Suppl. Ser. 57, 91–131 (1985).

13.J. R. Fuhr and W. L. Wiese, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron,” J. Phys. Chem. Ref. Data 35, 1669–1809 (2006).

14.J. R. Gerke, C. S. Kochanek, and K. Z. Stanek, “The search for failed supernovae with the Large Binocular Telescope: First candidates,” Mon. Not. R. Astron. Soc. 150, 3289–3305 (2015).

15.C. González-Fernández, R. Dorda, I. Negueruela, and A. Marco, “A new survey of cool supergiants in the Magellanic Clouds,” Astron. Astrophys. 578, A3 (2015).

16.V. F. Gopka, A. V. Shavrina, V. A. Yushchenko, et al., “On the thorium absorption lines in the visible spectra of supergiant stars in the Magellanic Clouds,” Bull. Crimean Astrophys. Observatory 109, 41–47 (2013).

17.V. F. Gopka, S. V. Vasil’eva, A. V. Yushchenko, and S. M. Andrievsky, “Thorium lines in the spectra of several SMC supergiant stars,” Odessa Astron. Publ. 20, 58–61 (2007).

18.V. F. Gopka, A. V. Yushchenko, S. M. Andrievsky, et al., “The abundances of chemical elements in the atmospheres of K-supergiants in the Small Magellanic Cloud and Arcturus,” in From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, Paris, France: Proc. 228th IAU Symp., May 23–27, 2005 (Cambridge Univ. Press, Cambridge, MA, 2007), pp. 535–536.

19.V. Gopka, A. Yushchenko, V. Kovtyukh, et al., “The abundances of heavy elements in red supergiants of Magellanic Clouds,” Odessa Astron. Publ. 26, 54–59 (2013).

20.V. F. Gopka, A. V. Yushchenko, T. V. Mishenina, et al., “Atmospheric chemical composition of the halo star HD 221170 from a synthetic-spectrum analysis,” Astron. Rep. 48, 577–587 (2004).

21.J. L. Greenstein, “Analysis of the metallic-line stars. II.,” Astrophys. J. 109, 121–138 (1949).

22.N. Grevesse, M. Asplund, A. J. Sauval, and P. Scott, “The chemical composition of the Sun,” Astrophys. Space Sci. 328, 179–183 (2010).

23.N. Grevesse, P. Scott, M. Asplund, and A. J. Sauval, “The elemental composition of the Sun. III. The heavy elements Cu to Th,” Astron. Astrophys. 573, A27 (2015).

24.O. Havnes, “Abundances and acceleration mechanisms of cosmic rays,” Nature 229, 548–549 (1971).

25.O. Havnes, “Magnetic stars as generators of cosmic rays,” Astron. Astrophys. 13, 52–57 (1971).

26.O. Havnes and P. S. Conti, “Magnetic accretion processes in peculiar A stars,” Astron. Astrophys. 14, 1–11 (1971).

27.A. Heger, C. L. Fryer, S. E. Woosley, N. Longer, and D. H. Hartmann, “How massive single stars end their life,” Astrophys. J. 591, 288–300 (2003).

28.V. Hill, “Chemical composition of six K supergiants in the Small Magellanic Cloud,” Astron. Astrophys. 324, 435–448 (1997).

29.R. W. Hildithich, I. D. Howarth, and T. J. Harries, “Forty eclypcing binaries in the Small Magellanic Cloud,” Mon. Not. R. Astron. Soc. 357, 304–324 (2006).

30.V. Hill, V. Barbuy, and M. Spite, “Carbon, nitrogen, oxygen and lithium abundances of six cool supergiants in the SMC,” Astron. Astrophys. 323, 461–468 (1997).

31.R. Hirata and T. Horaguchi, “Atomic spectral line list,” SIMBAD Catalog VI/69 (1995). pub/cats/VI/69.

32.R. M. Humphreys, “M supergiants and the low metal abundances in the Small Magellanic Cloud,” Astrophys. J. 231, 384–387 (1979).

33.Y.-W. Kang, A. Yushchenko, K. Hong, S. Kim, and V. Yushchenko, “Chemical composition of the components of eclipsing binary star ZZ Bootis,” Astron. J. 144, 35 (2012).

34.Y.-W. Kang, A. V. Yushchenko, K. Hong, E. F. Guinan, and V. F. Gopka, “Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei,” Astron. J. 145, 167 (2013).

35.D. E. Kelleher and L. I. Podobedava, “Atomic transition probabilities of sodium and magnesium. A critical compilation,” J. Phys. Chem. Ref. Data 37, 267–706 (2008).

36.D. E. Kelleher and L. I. Podobedava, “Atomic transition probabilities of aluminum. A critical compilation,” J. Phys. Chem. Ref. Data. 37, 709–911 (2008).

37.C. S. Kochanek, J. F. Beacom, M. D. Kistler, et al., “A survey about nothing: Monitoring a million supergiants for failed supernovae,” Astrophys. J. 684, 1336–1342 (2008).

38.R. L. Kurucz, “Atomic and molecular data for opacity calculations,” Rev. Mex. Astron. Astrofis. 23, 45–48 (1992).

39.R. L. Kurucz, Atomic Data for Opacity Calculations, Kurucz CD-ROM No. 1–23 (Smithson. Astrophys. Obs., Cambridge, MA, 1993).

40.R. L. Kurucz, “An atomic and molecular data bank for stellar spectroscopy,” in Proc. Workshop on Laboratory and Astronomical High Resolution Spectra, Brussels, Belgium, Aug. 29–Sept. 2 1994, Ed. by A. J. Sauval, R. Blomme, and N. Grevesse (Astron. Soc. Pac., San Francisco, CA, 1995), in Ser.: ASP Conference Series, Vol. 81, pp. 583–588.

41.R. L. Kurucz and E. Peytremann, “A table of semiempirical gf values. Part 1: Wavelengths: 5.2682 nm to 272.3380 nm,” Smithsonian Astrophysical Observatory Special Report No. 362, Part 1, 1–1223 (Smithson. Astrophys. Obs., Harvard, MA, 1975).

42.E. M. Levesque, “Red supergiants in Local Group,” in Proc. Betelgeuse Workshop 2012: The Physics of Red Supergiants: Recent Advances and Open Questions, Ed. by P. Kervella, T. Le Bertre, and G. Perrin; EAS Publ. Ser. 60, 269–277 (2013).

43.K. Lodders, “Solar system abundances and condensation temperatures of the elements,” Astrophys. J. 591, 1220–1247 (2003).

44.N. Martin, E. Maurice, and J. Lequeux, “The structure of the Small Magellanic Cloud,” Astron. Astrophys. 215, 219–242 (1989).

45.L. Mashonkina, T. Ryabchikova, A. Ryabtsev, and R. Kildiyarova, “Non-LTE line formation for Pr II and Pr III in A and Ap stars,” Astron. Astrophys. 495, 297–311 (2009).

46.P. Massey and K. A. G. Olsen, “The evolution of massive stars. I. Red supergiants in the Magellanic Clouds,” Astron. J. 126, 2867–2886 (2003).

47.R. X. McGee and L. M. Newton, “HI in the Small Magellanic Cloud re-examined,” Proc. -Astron. Soc. Aust. 4, 189–195 (1981).

48.G. Meynet, V. Chomienne, S. Ekström, et al., “Impact of mass-loss on the evolution and pre-supernova properties of red supergiants,” Astron. Astrophys. 575, A60 (2015).

49.D. C. Morton, “Atomic data for resonance absorption lines. II. Wavelengths longward of the Lyman limit for heavy elements,” Astrophys. J. Suppl. Ser. 130, 403–436 (2000).

50.U. Munari, A. Henden, A. Frigo, et al., “APASS Landolt–Sloan BVgri photometry of RAVE stars. I. Data, effective temperatures, and reddenings,” Astron. J. 148, 81 (2014).

51.S. J. Murphy and E. Paunzen, “Gaia’s view of the λ Boo star puzzle,” Mon. Not. R. Astron. Soc. 466, 546–555 (2017).

52.H. Nilsson, S. Ivarsson, S. Johansson, and H. Lundberg, “Experimental oscillator strengths in U II of cosmological interest,” Astron. Astrophys. 381, 1090–1093 (2002).

53.H. Nilsson, Z. G. Zhang, H. Lundberg, S. Johansson, and B. Nordström, “Experimental oscillator strengths in Th II,” Astron. Astrophys. 382, 368–377 (2002).

54.N. E. Piskunov, F. Kupka, T. A. Ryabchikova, W. W. Weiss, and C. S. Jeffery, “VALD: The Vienna Atomic Line Data Base,” Astron. Astrophys. Suppl. Ser. 112, 525–535 (1995).

55.L. Prevot, N. Martin, E. Rebeirot, E. Maurice, and J. Rousseau, “A catalogue of late-type supergiant stars in the Small Magellanic Cloud,” Astron. Astrophys. Suppl. Ser. 53, 255–269 (1983).

56.C. R. Proffitt and G. Michaud, “Abundance anomalies in A and B stars and the accretion of nuclear-processed material from supernovae and evolved giants,” Astrophys. J. 345, 998–1007 (1989).

57.D. Proga, S. J. Kenyon, and J. C. Raymond, “Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case,” Astrophys. J. 501, 339–356 (1998).

58.J. Ren, N. Christlieb, and G. Zhao, “The Hamburg/ESO R-process Enhanced Star survey (HERES). VII. Thorium abundances in metal-poor stars,” Astron. Astrophys. 537, A18 (2012).

59.S. C. Russell, “Heavy element abundances in the Magellanic clouds,” Proc. - Astron. Soc. Aust. 9, 82–83 (1991).

60.J. Simmerer, C. Sneden, J. J. Cowan, J. Collier, V. M. Woolf, and J. E. Lawler, “The rise of the s-process in the galaxy,” Astrophys. J. 617, 1091–1114 (2004).

61.C. Siqueira Mello, V. Hill, B. Barbuy, et al., “High-resolution abundance analysis of very metal-poor r-I stars,” Astron. Astrophys. 565, A93 (2014).

62.D. J. Smartt, “Observational constraints on the progenitors of core-collapse supernovae: The case for missing high-mass stars,” Publ. Astron. Soc. Aust. 32, e016 (2015).

63.O. Szewczyk, G. Pietrzynski, W. Gieren, et al., “The Araucaria project: The distance to the Small Magellanic Cloud from near-infrared photometry of RR Lyrae variables,” Astron. J. 138, 1661–1666 (2009).

64.K. A. Venn and D. L. Lambert, “The chemical composition of three Lambda Bootis stars,” Astrophys. J. 363, 234–244 (1990).

65.K. A. Venn and D. L. Lambert, “Could the ultra-metal-poor stars be chemically peculiar and not related to the first stars?,” Astrophys. J. 677, 572–580 (2008).

66.A. V. Yushchenko, “URAN: A software system for the analysis of stellar spectra,” in Proc. 20th Stellar Conf. of the Czech and Slovak Astronomical Institutes, Brno, Czech Republic, Nov. 5–7, 1997, Ed. by J. Dusek (N. Copernicus Obs. and Planetarium Brno, Brno, 1998), pp. 201–203.

67.A. Yushchenko, V. Gopka, S. Goriely, et al., “Thorium-rich halo star HD221170: Further evidence against the universality of the r-process,” Astron. Astrophys. 430, 255–262 (2005).

68.A. V. Yushchenko, V. F. Gopka, Y.-W. Kang, et al., “The chemical composition of ? Puppis and the signs of accretion in the atmospheres of B–F-type stars,” Astron. J. 149, 59 (2015).

69.A. V. Yushchenko, V. F. Gopka, V. L. Khokhlova, F. A. Musaev, and I. F. Bikmaev, “Atmospheric chemical composition of the “twin” components of equal mass in the CP SB2 system 66 Eri,” Astron. Lett. 25, 453–466 (1999).