Molecules in the early Universe
1Novosyadlyi, B, 2Sergijenko, O, 3Shulga, V 1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine 2Jilin University, Changchun, China 3Institute of Radio Astronomy of NAS of Ukraine, Kharkiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2017, 33(6):3-16 |
https://doi.org/10.15407/kfnt2017.06.003 |
Start Page: Extragalactic Astronomy |
Language: Ukrainian |
Abstract: We study the formation of first molecules, negative Hydrogen ions and molecular ions in model of the Universe with cosmological constant and cold dark matter. The cosmological recombination is described in the framework of modified model of the effective 3-level atom, while the kinetics of chemical reactions in the framework of the minimal model for Hydrogen, Deuterium and Helium. It is found that the uncertainties of molecular abundances caused by the inaccuracies of computation of cosmological recombination are about 2-3 %. The uncertainties of values of cosmological parameters affect the abundances of molecules, negative Hydrogen ions and molecular ions at the level of up to 2 %. In the absence of cosmological reionization at redshift z = 10 the ratios of abundances to the Hydrogen one are 3.08*10–13 for H–, 2.37*10–6 for H2, 1.26*10–13 for H+2, 1.12*10–9 for HD and 8.54*10–14 for HeH+. |
Keywords: cold dark matter, cosmological recombination, early Universe, formation of first molecules |
1.B. Novosyadlyj, “Large-scale structure of the Universe formation: Theory and observations,” J. Phys. Stud. 11, 226–257 (2007).
2.Y. Ali-Haimoud and C. M. Hirata, “HyRec: A fast and highly accurate primordial hydrogen and helium recombination code,” Phys. Rev. D 83, 043513 (2011).
https://doi.org/10.1103/PhysRevD.83.043513
3.E. Alizadeh and C. M. Hirata, “Molecular hydrogen in the cosmic recombination epoch,” Phys. Rev. D 84, 083011 (2011).
https://doi.org/10.1103/PhysRevD.84.083011
4.C. M. Coppola, P. Diomede, S. Longo, and M. Capitelli, “H2 and HD direct photodissociation in the chemistry of the primordial Universe,” Astrophys. J. 727, 37 (2011).
https://doi.org/10.1088/0004-637X/727/1/37
5.C. M. Coppola, S. Longo, M. Capitelli, F. Palla, and D. Galli, “Vibrational level population of H2 and H+2 in the early Universe,” Astrophys. J. Suppl. 193, 7 (2011).
https://doi.org/10.1088/0067-0049/193/1/7
6.J. Chluba and R. M. Thomas, “Towards a complete treatment of the cosmological recombination problem,” Mon. Not. R. Astron. Soc. 412, 748–764 (2011).
https://doi.org/10.1111/j.1365-2966.2010.17940.x
7.B. D. Fields, P. Molaro, and S. Sarkar, “Big-Bang nucleosynthesis,” Chin. Phys. C 38, 339–344 (2014).
8.D. Galli and F. Palla, “The chemistry of the early Universe,” Astron. Astrophys. 335, 403–420 (1998).
9.D. Galli and F. Palla, “The dawn of chemistry,” Annu. Rev. Astron. Astrophys. 51, 163–206 (2013).
https://doi.org/10.1146/annurev-astro-082812-141029
10.S. C. O. Glover and T. Abel, “Uncertainties in H2 and HD chemistry and cooling and their role in early structure formation,” Mon. Not. R. Astron. Soc. 388, 1627–1651 (2008).
https://doi.org/10.1111/j.1365-2966.2008.13224.x
11.S. C. O. Glover and D. W. Savin, “Is H+3 cooling ever important in primordial gas?,” Mon. Not. R. Astron. Soc. 393, 911–948 (2009).
https://doi.org/10.1111/j.1365-2966.2008.14156.x
12.C. M. Hirata and N. Padmanabhan, “Cosmological production of H2 before the formation of the first galaxies,” Mon. Not. R. Astron. Soc. 372, 1175–1186 (2006).
https://doi.org/10.1111/j.1365-2966.2006.10924.x
13.Y. I. Izotov and I. G. Kolesnik, “Kinetics of H2 formation in the primordial gas,” Sov. Astron. 28, 15–21 (1984).
14.E. E. Kholupenko, A. V. Ivanchik, and D. A. Varshalovich, “Rapid He II?He I recombination and radiation arising from this process,” Mon. Not. R. Astron. Soc. 378, L39–L43 (2007).
https://doi.org/10.1111/j.1745-3933.2007.00316.x
15.S. Lepp and J. M. Shull, “Molecules in the early universe,” Astrophys. J. 280, 465–469 (1984).
https://doi.org/10.1086/162013
16.S. Lepp, P. C. Stancil, and A. Dalgarno, “TOPICAL REVIEW: Atomic and molecular processes in the early Universe,” J. Phys. B 35, R57–R80 (2002).
https://doi.org/10.1088/0953-4075/35/10/201
17.B. Novosyadlyj, “Perturbations of ionization fractions at the cosmological recombination epoch,” Mon. Not. R. Astron. Soc. 370, 1771–1782 (2006).
https://doi.org/10.1111/j.1365-2966.2006.10593.x
18.P. J. E. Peebles, “Recombination of the primeval plasma,” Astrophys. J. 153, 1–11 (1968).
https://doi.org/10.1086/149628
19.D. Pfenniger and D. Puy, “Possible flakes of molecular hydrogen in the early Universe,” Astron. Astrophys. 398, 447–454 (2003).
https://doi.org/10.1051/0004-6361:20021678
20.Planck Collab., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571, A16 (2014).
https://doi.org/10.1051/0004-6361/201321591
21.Planck Collab., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594, A13 (2016).
https://doi.org/10.1051/0004-6361/201525830
22.D. Puy, G. Alecian, J. Le Bourlot, et al., “Formation of primordial molecules and thermal balance in the early universe,” Astron. Astrophys. 267, 337–346 (1993).
23.D. Puy and M. Signore, “Primordial molecules in the early cloud formation,” Astron. Astrophys. 305, 371 (1996).
24.D. Puy and M. Signore, “Molecular cooling of a collapsing protocloud,” New Astron. 2, 299–308 (1997).
https://doi.org/10.1016/S1384-1076(97)00020-1
25.D. Puy and M. Signore, “Primordial chemistry,” New Astron. Rev. 43, 223–241 (1999).
https://doi.org/10.1016/S1387-6473(99)00015-9
26.D. Puy and M. Signore, “Primordial chemistry from molecules to secondary cosmic microwave background anisotropies,” New Astron. Rev. 51, 411–416 (2007).
https://doi.org/10.1016/j.newar.2006.11.068
27.J. A. Rubiño-Martín, J. Chluba, W. A. Fendt, and B. D. Wandelt, “Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments,” Mon. Not. R. Astron. Soc. 403, 439–452 (2010).
https://doi.org/10.1111/j.1365-2966.2009.16136.x
28.D. R. G. Schleicher, D. Galli, F. Palla, et al., “Effects of primordial chemistry on the cosmic microwave background,” Astron. Astrophys. 490, 521–535 (2008).
https://doi.org/10.1051/0004-6361:200809861
29.D. Scott and A. Moss, “Matter temperature during cosmological recombination,” Mon. Not. R. Astron. Soc. 397, 445–446 (2009).
https://doi.org/10.1111/j.1365-2966.2009.14939.x
30.S. Seager, D. D. Sasselov, and D. Scott, “A new calculation of the recombination epoch,” Astrophys. J. Lett. 523, L1–L5 (1999).
https://doi.org/10.1086/312250
31.S. Seager, D. D. Sasselov, and D. Scott, “How exactly did the Universe become neutral?,” Astrophys. J., Suppl. Ser. 128, 407–430 (2000).
https://doi.org/10.1086/313388
32.P. C. Stancil, S. Lepp, and A. Dalgarno, “The deuterium chemistry of the early Universe,” Astrophys. J. 509, 1–10 (1998).
https://doi.org/10.1086/306473
33.P. Vonlanthen, T. Rauscher, C. Winteler, et al., “Chemistry of heavy elements in the Dark Ages,” Astron. Astrophys. 503, 47–59 (2009).
https://doi.org/10.1051/0004-6361/200811297
34.W. Y. Wong, A. Moss, and D. Scott, “How well do we understand cosmological recombination?,” Mon. Not. R. Astron. Soc. 386, 1023–1028 (2008).
https://doi.org/10.1111/j.1365-2966.2008.13092.x