Magnetar SGR 1900+14 as a potential source of galactic cosmic rays with energies above 10E20 eV

1Gnatyk, RB
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2018, 34(4):3-13
Start Page: Extragalactic Astronomy
Language: Ukrainian

The analysis of the influence of the Galactic magnetic field on the trajectory of cosmic rays of extremely high energies (EHECR, E > 1020 eV) detected by AUGER and Telescope Array (TA) detectors shows that the magnetar SGR 1900+14 is a potential Galactic source of the EHECR triplet — three events in a circle of radius 2° in the vicinity of the Galactic Center (l = 35°, b = –4°). Magnetar SGR 1900+14 — a neutron star with magnetic field of the order of 1015 G — was formed as a result of the Supernova outburst 1000—6000 years ago. In our work we investigate possible manifestations of cosmic rays accelerated by the SNR, due to their interaction with the molecular clouds of the interstellar medium in the vicinity of Supernova. In particular, the possibility of such a gamma-ray emission model of the newly discovered unidentified TeV gamma-ray source 2HWC J1907+084 is analysed.

Keywords: cosmic rays, magnetars, molecular clouds

1.R. Gnatyk and V. Zhdanov, “Search of the Galactic sources of the cosmic ray triplet with energies above 1020 eV” Bulletin of National Taras Shevchenko University of Kyiv. Astronomy. 53 (1), 37–40 (2016).

2.A. Aab, P. Abreu, M. Aglietta, et al., “Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array,” Astrophys. J. 794, 172 (2014).

3.A. Aab, P. Abreu, M. Aglietta, et al., “Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory,” Astrophys. J. 804, 15 (2015).

4.A. U. Abeysekara, A. Albert, R. Alfaro, et al., “The 2HWC HAWC Observatory Gamma Ray Catalog,” Astrophys. J. 843, 40 (2017).

5.F. A. Aharonian, Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe (World Sci., Singapore, 2004), p. 495.

6.D. Allard, “Extragalactic propagation of ultrahigh energy cosmic-rays,” Astropart. Phys. 39–40, 33–43 (2012).

7.G. S. Bisnovatyi-Kogan, “Young neutron stars with soft gamma ray emission, and anomalous X-ray pulsars,” in Handbook of Supernovae, Ed. by A. Alsabti and P. Murdin (Springer-Verlag, Cham, 2016).

8.R. C. Duncan and C. Thompson, “Formation of very strongly magnetized neutron stars — Implications for gamma-ray bursts,” Astrophys. J. Lett. 392, L9–L13 (1992).

9.D. Eichler, “Ultrahigh energy activity in giant magnetar outbursts” (2005).

10.V. M. Kaspi and A. M. Beloborodov, “Magnetars,” Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

11.K. Kotera and A. V. Olinto, “The astrophysics of ultrahigh energy cosmic rays,” Annu. Rev. Astron. Astrophys. 49, 119–153 (2011).

12.E. P. Mazets, S. V. Golenetskij, and Y. A. Guryan, “Soft gamma-ray bursts from the source B1900+14,” Sov. Astron. Lett. 5, 343–344 (1979).

13.S. A. Olausen and V. M. Kaspi, “The McGill magnetar catalog,” Astrophys. J. Suppl. 212, 6 (2014).

14.T. S. Rice, A. A. Goodman, E. A. Bergin, et al., “A uniform catalog of molecular clouds in the Milky Way,” Astrophys. J. 822, 52 (2016).

15.J. Smidt, D. J. Whalen, B. K. Wiggins, et al., “Population III hypernovae,” Astrophys. J. 797, 97 (2014).

16.P. Sokolsky, “Recent results from TA. Report on workshop "Multimessenger astronomy in the era of PeV neutrinos”” (2014).

17.S. P. Tendulkar, P. B. Cameron, and S. R. Kulkarni, “Proper motions and origins of SGR 1806-20 and SGR 1900+14,” Astrophys. J. 761, 76 (2012).

18.The CTA Collaboration, “Science with the Cherenkov Telescope Array” (2017).
arXiv 1709.07997

19.The Fermi-LAT Collaboration, “3FHL: The third catalog of hard Fermi-LAT sources” (2017).

20.R. Turolla, S. Zane, and A. Watts, “Magnetars: The physics behind observations,” Rep. Prog. Phys. 78, 116901 (2015).

21.A. D. Vlasov, B. D. Metzger, and T. A. Thompson, “Neutrino-heated winds from rotating protomagnetars,” Mon. Not. R. Astron. Soc. 444, 3537–3558 (2014).