Spectra of turbulence during the dipolarization of the magnetic field

1Kozak, LV, 1Petrenko, BA, 2Kronberg, EA, 3Grigorenko, EE, 4Lui, E, 5Cheremnykh, SO
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Max Planck Institute, Göttingen, Germany
3Russian Space Research Institute, Moscow, Russia
4Johns Hopkins University, Baltimore, USA
5Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2018, 34(5):52-69
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian

The presence of heterogeneity of turbulent processes has been analyzed, and spectra of the turbulence have been obtained for the regions before and during dipolarization of the magnetic field in the Earth's magnetosphere tail from the measurements of four space vehicles of Cluster-2 mission (the event on 21 September 2005). The spectral and wavelet analysis were supplemented by investigations of fluctuation kurtosis for magnetic field absolute value. In the region of dipolarization of magnetic field in the magnetosphere tail we have detected: decreasing horizontal component of magnetic field in parts of the tail and increasing the vertical component; kurtosis change; the presence of powerful Pc5 and Pc4 pulsations, and also direct and inverse cascades; the break in the spectra on frequencies lower than proton gyrofrcqucncy; changing a character of turbulent motions on different time scales (at large time scales, the turbulent flow corresponds to the homogeneous models of Kolmogorov and Iroshnikov-Kraichnan, and at smaller time scales the turbulent flow is described by the clcctron-magnctohydrodynamic turbulence model). Using the measurements from different space vehicles we were able to estimate the velocity of plasma flow in the tail direction.

Keywords: Pc pulsations, substorm development models, tail of the Earth’s magnetosphere, turbulence spectra, turbulent processes

1.G. I. Barenblatt, “Turbulent boundary layers at very large Reynolds numbers,” Russ. Math. Surv. 59, 47–64 (2004).

2.L. V. Kozak, S. P. Savin, V. P. Budaev, L. A. Lezhen, and V. A. Pilipenko, “Character of turbulence in the boundary regions of the Earth’s magnetosphere,” Geomagn. Aeron. (Engl. Transl.) 52, 445–455 (2012).

3.L. V. Kozak, “The methods and approaches to determine characteristics of turbulent environment,” Kosm. Nauka Tekhnol. 22, 60–77 (2016).

4.L. V. Kozak, V. A. Pilipenko, O. M. Chugunova, and P. N. Kozak, “Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath,” Cosmic Res.49, 194–204 (2011).

5.A. N. Kolmogorov, “Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers,” Sov. Phys. Usp. 10, 734–746 (1968).

6. Space Geophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vol. 1 [in Russian].

7.A. Nishida, Geomagnetic Diagnosis of the Magnetosphere (Springer-Verlag, New York, 1978; Mir, Moscow, 1980).

8.P. G. Frik, Turbulence: Models and Approaches. A Course of Lectures (Permsk. Gos. Tekh. Univ., Perm’, 1999), Vol. II [in Russian].

9.U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, Cambridge, 1995; Fazis, Moscow, 1998) [in Russian].

10.J. W. Bieber, E. Stone, E. W. Hones, et al., “Plasma behavior during energetic electron streaming events: Further evidence for substorm-associated magnetic reconnection,” Geophys. Res. Lett. 9, 664–667 (1982).

11.D. Biskamp, E. Schwarz, and J. F. Drake, “Two-dimensional electron magnetohydrodynamic turbulence,” Phys. Rev. Lett. 76, 1264–1272 (1996).

12.M. N. Caan and R. L. McPherron, ‘The statistical magnetic signatures of magnetospheric substorms,” Planet. Space Sci. 26, 269–279 (1978).

13.T. Chang, “Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail,” Phys. Plasmas 6, 4137–4149 (1999).

14.G. Consolini, M. Kretzschmar, A. T. Y. Lui, G. Zimbardo, W. M. Macek, “On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach,” J. Geophys. Res.: Space Phys. 110, A07202 (2005).

15.M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458.

16.D. H. Fairfield, T. Mukai, M. Brittnacher, et al., “Earthward flow bursts in the inner magnetosphere and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity,” J. Geophys. Res. Space Phys. 104, 355–370 (1999).

17.L. A. Frank, W. R. Paterson, J. Sigwarth, and S. Kokubun, “Observations of magnetic field dipolarization during auroral substorm onset,” J. Geophys. Res.: Space Phys. 105, 15897–15912 (2000).

18.E. E. Grigorenko, E. A. Kronberg, P. W. Daly, N. Y. Ganushkina, J.-A. Sauvaud, and L. M. Zelenyi, “Origin of low proton-to-electron temperature ratio in the Earth’s plasma sheet,” J. Geophys. Res.: Space Phys. 121 (10) (2016).

19.A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the cross wavelet transform and wavelet coherence to geophysical time series,” Nonlinear Process. Geophys. 11, 561–566 (2004).

20. Handbook of the Solar-Terrestrial Environment, Ed. by Y. Kamide and A. Chian (Springer-Verlag, Berlin, 2007).

21.S. Jevrejeva, J. C. Moore, and A. Grinsted, “Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach,” J. Geophys. Res.: Atmos. 108, 4677–4708 (2003).

22.Rae I. Jonathan, I. R. Mann, V. Angelopoulos, K. R. Murphy, D. K. Milling, A. Kale, H. U. Frey, G. Rostoker, M. J. Engebretson, M. Moldwin, S. Mende, H. J. Singer, and E. F. Donovan, “Near-Earth initiation of a terrestrial substorm,” J. Geophys. Res.: Space Phys. 114, 2156–2202 (2009).

23.L. V. Kozak, A. S. Prokhorenkov, and S. P. Savin, “Statistical analysis of the magnetic fluctuations in boundary layers of Earth’s magnetosphere,” Adv. Space Res. 56, 2091–2096 (2015).

24.L. V. Kozak, A. T. Y. Lui, E. A. Kronberg, and A. S. Prokhorenkov, “Turbulent processes in Earth’s magnetosheath by Cluster mission measurements,” J. Atmos. Sol.-Terr. Phys. 154, 115–126 (2017).

25.R. H. Kraichnan, “Convergents to turbulence functions,” J. Fluid Mech. 41, 189–217 (1970).

26.R. H. Kraichnan, “The structure of isotropic turbulence at very high Reynolds numbers,” J. Fluid Mech. 5, 497–543 (1959).

27.E. A. Kronberg, E. E. Grigorenko, D. L. Turner, P. W. Daly, Y. Khotyaintsev, L. Kozak, “Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event,” J. Geophys. Res.: Space Phys. 122 (10) (2017).

28.R. E. Lopez, “Magnetospheric substorms,” Johns Hopkins APL Tech. Dig. 11, 264–271 (1990).

29.Lui, A.T.Y., “Extended consideration of a synthesis model for magnetospheric substorms,” in Magnetospheric Substorms, Ed. by J. R. Kan, T. A. Potemra, S. Kokobun, and T. Iijima (AGU, Washington, DC, 1991), in Ser: Geophysical Monograph, Vol. 64.

30.A. T. Y. Lui, “Inferring global characteristics of current sheet from local measurements,” J. Geophys. Res.: Space Phys. 98, 13423–13427 (1993).

31.A. T. Y. Lui, “Current disruption in the Earth’s magnetosphere: Observations and models,” J. Geophys. Res. : Space Phys. 101, 13067–13088 (1996).

32.A. T. Y. Lui, R. E. Lopez, B. J. Anderson, et al., “Current disruptions in the near-Earth neutral sheet region,” J. Geophys. Res.: Space Phys. 97, 1461–1480 (1992).

33.A. T. Y. Lui, Multiscale phenomena in the near-Earth magnetosphere,” J. Atmos. Sol.-Terr. Phys. 64, 125–143 (2002).

34.A. T. Y. Lui, “Potential plasma instabilities for substorm expansion onsets,” Space Sci. Rev. 113, 127–206 (2004).

35.A. T. Y. Lui, Y. Zheng, Y. Zhang, S. Livi, H. Reme, M. W. Dunlop, G. Gustafsson, S. Mende, C. Mouikis, and L. M. Kistler, “Cluster observation of plasma flow reversal in the magnetotail during a substorm.” Ann. Geophys. 24, 2005–2013 (2006).

36.R. L. McPherron, “Substorm related changes in the geomagnetic tail: The growth phase,” Planet. Space Sci. 20, 1521–1539 (1972).

37.S. Ohtani, M. A. Shay, and T. Mukai, “Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations,” J. Geophys. Res.: Space Phys. 109, A03210 (2004).

38.G. Paschmann and P. W. Daly, Spectral Analysis, Reprinted from Analysis Methods for Multi-Spacecraft Data, ISSI Scientific Report No. SR-001, ed. 1.1 (2000).

39.V. A. Sergeev, D. G. Mitchell, and D. J. Williams, “Structure of the tail plasma/current sheet at ~11 Re and its changes in the course of a substorm,” J. Geophys. Res.: Space Phys. 98, 17345–17365 (1993).

40. THOR Exploring Plasma Energization in Space Turbulence, ESA/SRE Assessment Study Report (2017).

41.C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

42.A. G. Yahnin, I. V. Despirak, A. A. Lubchich, et al., “Indirect mapping of the source of the oppositely directed fast plasma flows in the plasma sheet onto the auroral display,” Ann. Geophys. 24, 679–687 (2006).

43.S. Zacks, Theory of Statistical Inference (John Wiley & Sons, New York, 1971), in Ser.: Probability & Mathematical Statistics, Vol. 582.