Optimization of video cameras disposition for providing maximal calculation precision of coordinates of natural and artificial atmosphere objects for stereo observation

1Kozak, PM, 2Lapchuk, VP, 2Kozak, LV, 2Ivchenko, VN
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2018, 34(6):57-78
Start Page: Instruments and Devices
Language: Ukrainian

The problem of optimization of video cameras couple disposition for providing maximal precision of radius-vector and velocity vector of natural and artificial objects in atmosphere and near earth space from double-station TV observations is considered. The influence of video cameras resolution and precision of determination of the observational points positions onto the distance to atmospheric object calculation precision is investigated. The formula for calculation of relative error of the distance determination expressed in values of basic distance is derived. For determination of errors of object radius-vector and velocity vector components the modeling of direct probl em with application of Monte-Carlo method is used. 3D distribution of an error for the observed object coordinates calculation is shown. The calculation precision for velocity absolute value of a body, and error distribution for velocity vector direction of a sphere is demonstrated. For demonstration the calculation results of atmospheric parameters of meteors are used. Possible fields of obtained results application are briefly discussed: astronomy, geophysics, physics of atmosphere, geodesy, aviation, computer vision systems.

Keywords: atmosphere objects observations, distance determination errors, kinematic parameters determination precision, meteors, TV stereo observations, velocity vector calculation errors, video observations

1.L. V. Kozak, V. N. Ivchenko, A. S. Odzimek, I. S. Klokov, P. N. Kozak, and V. P. Lapchuk, “Estimation of atmosphere glow energy over storm discharges,” Kosm. Nauka Tehnol. 18 (2), 33–42 (2012).

2.L. Kozak, A. Odzimek, V. Ivchenko, P. Kozak, I. Gala, and V. Lapchuk, “The optical effects from high-altitude storm discharges in Earth atmosphere,” Vestn. Kyiv. Nats. Univ. im. Tarasa Shevchenko. Ser. Astron., No. 1 (53), 11–15 (2016).

3.P. N. Kozak, “Analysis of the methods and precision of determination of the equatorial coordinates in digital reducing of TV observations of meteors,” Kinematika Fiz. Nebesnykh Tel 18, 471–480 (2002).

4.P. N. Kozak, “Vector method for the determination of trajectory parameters and heliocentric orbit elements of a meteor in TV observations,” Kinematika Fiz. Nebesnykh Tel 19, 62–76 (2003).

5.P. M. Kozak and L. V. Kozak, “Method for photometry of low light level meteors and earth artificial satellites from observations of superisocon TV systems,” Kosm. Nauka Tekhnol. 21 (1), 38–47 (2015).

6.E. Bettonvil, “Least squares estimation of a meteor trajectory and radiant with a Gauss–Markov model,” in Proc. Int. Meteor Conf. 2005, Oostmalle, Belgium, Oct. 15–18, 2005, Ed. L. by Bastiaens, J. Verbert, J.-M. Wislez, and C. Verbeeck, (Int. Meteor Organisation, 2006), pp. 63–73.

7.P. Brown, M. D. Campbell, R. L. Hawkes, C. Theijsmeijer, and J. Jones, “Multi-station electro-optical observations of the 1999 Leonid meteor storm,” Planet. Space Sci. 50, 45–55 (2002).

8.Y. Fujiwara, M. Ueda, Y. Kawasaki, and T. Nakamura, “Observation of the Leonid meteor shower in 2002: First observation of a faint meteor storm,” Publ. Astron. Soc. Jpn. 55, 1157–1162 (2003).

9.Y. M. Gorbanev, “Odessa television meteor patrol,” Odessa Astron. Publ. 22, 60–67 (2009).

10.P. S. Gural, “Algorithms and software for meteor detection,” Earth, Moon, Planets 102, 269–275 (2008).

11.M. Hajdukova, V. G. Kruchinenko, A. M. Kazantsev, Ju. G. Taranucha, A. A. Rozhilo, S. S. Eryomin, and P. N. Kozak, “Perseid meteor stream 1991–1993 from TV observations in Kiev,” Earth, Moon, Planets 68, 297–301 (1995).

12.M. Iye, M. Tanaka, M. Yanagisawa, N. Ebizuka, K. Ohnishi, C. Hirose, N. Asami, Y. Komiyama, and H. Furusawa, “SuprimeCam observation of sporadic meteors during Perseids 2004,” Publ. Astron. Soc. Jpn. 59, 841–855 (2007).

13.P. Koten, “Software for processing of meteor video records,” in Proc. Int. Conf. Asteroids, Comets, Meteors (ACM’2002), Berlin, Germany, July 29 – Aug. 2, 2002, Ed. by B. Warmbein (Eur. Space Agency, Noordwijk, 2002), pp. 197–200.

14.P. Koten, K. Fliegel, S. Vítek, and P. Páta, “Automatic video system for continues monitoring of the meteor activity,” Earth, Moon, Planets. 108, 69–76 (2011).

15.P. Koten, P. Spurny, J. Borovicka, and R. Stork, “Catalogue of video meteor orbits. Part 1,” Publ. Astron. Inst. Acad. Sci. Czech Repub., No. 91, 1–32 (2003).

16.P. Kozak, “"Falling Star”: Software for processing of double-station TV meteor observations,” Earth, Moon, Planets 102, 277–283 (2008).

17.P. M. Kozak, A. A. Rozhilo, and Y. G. Taranukha, “Some features of digital kinematic and photometrical processing of faint TV meteors,” in Proc. Int. Conf. Meteoroids 2001, Kiruna, Sweden, Aug. 6–10, 2001, Ed. by B. Warmbein (Eur. Space Agency, Noordwijk, 2001), pp. 337–342.

18.P. Kozak, O. Rozhilo, V. Kruchynenko, A. Kazantsev, and A. Taranukha, “Results of processing of Leonids-2002 meteor storm TV observations in Kyiv,” Adv. Space Res. 39, 619–623 (2007).

19.P. M. Kozak and J. Watanabe, “Upward-moving low-light meteor — I. Observation results,” Mon. Not. R. Astron. Soc. 467, 793–801 (2017).

20.S. Molau, “The meteor detection software MetRec,” in Proc. Int. Conf. Meteoroids 1998, Tatranska Lomnica, Slovakia, August 17–21 1998, Ed. by W. J. Baggaley and V. Porubcan (Astron. Inst. Slovak Acad. Sci., Bratislava, 1999), p. 131.

21.A. Odzimek, J. Bór, M. Mielniczek, M. Pajek, P. Struzik, and P. Novak, “A case study of two sprite events recorded over Western Europe,” in Proc. EGU General Assembly 2013, Vienna, Austria, Apr. 7–12, 2013; Geophys. Res. Abstr. 15, EGU2013-8775-2 (2013).

22.SonotaCo, “A meteor shower catalog based on video observations in 2007–2008,” WGN, J. Int. Meteor Organ. 37, 55 (2009).