Large-scale structure of solar wind beyond Earth’s orbit reconstructed by using data of two-site interplanetary scintillation observations at decameter radio waves

1Kalinichenko, NN, 1Olyak, MR, 1Konovalenko, AA, 2Brazhenko, AI, 1Kuhai, NV, 1Romanchuk, AI
1Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Gravimetrical Observatory of Geophysical Institute of National Academy of Sciences of Ukraine, Poltava, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(1):27-41
Start Page: Space Physics
Language: Ukrainian

The solar wind is a collection of flows with different parameters (speed, spectral index, width and others). Spacecraft measurements were the means that allowed conclusions to be made about the bimodal character of the solar wind. The spacecraft “Ulysses” proved that the bimodal structure is clear at relatively large distances from the Sun (several astronomical units). Also, there is another possibility of the reconstruction of the solar wind stream structure. This is the interplanetary scintillation method. The purpose of the article is to reconstruct the stream structure of the solar wind beyond Earth’s orbit with using the data of the two-site interplanetary scintillation observations. The experiments were carried out at decameter wavelengths as they were relatively high scattered by the rarefied interplanetary plasma beyond Earth’s orbit. The experimental data that were analyzed in this work was obtained by synchronous interplanetary scintillation observations with the radio telescope UTR-2 and URAN-2. The determination of the parameters of the solar wind and its stream structure is undertaken by fitting calculated curves for different models to the experimental IPS characteristics (scintillation power spectra and velocities of cross spectrum harmonics). The spectral, spatial and frequency criteria were used to separate the interplanetary and ionospheric scintillations. The results of this investigation show that the solar wind beyond Earth’s orbit usually consists of several flows which replace each other on the line of sight to the radio source. These investigations prove reliability and efficiency of the interplanetary scintillation method for the reconstruction of the solar wind stream structure.

Keywords: interplanetary scintillations, solar wind, stream structure

1. Braude S. Ya., Men' A. V., Sodin L. G. (1978) Radioteleskop dekametrovogo diapazona dlin voln UTR-2. Antenny, 26,  3—15  (in Russian).

2. Kalinichenko N. N. (2011) Mertsaniya kosmicheskogo radioistochnika 4S21.53 v dekametrovom diapazone voln na elongatsiyakh 43°—138°. Radiofizika i radioastronomiya, 16(4), 386—393 (in Russian).

3. Kalinichenko N. N., Fal'kovich I. S., Konovalenko A. A., Brazhenko A. I. (2013) Razdeleniye mezhplanetnykh i ionosfernykh mertsaniy kosmicheskikh istochnikov v dekametrovom diapazone radiovoln. Radiofizika i radioastronomiya,  18(3), 210—219  (in Russian).

4. Fal'kovich I. S., Kalinichenko N. N., Gridin A. A., Bubnov I. N. (2004) O vozmozhnosti shirokopolosnykh nablyudeniy mezhplanetnykh mertsaniy na dekametrovykh volnakh. Radiofizika i radioastronomiya, 9(2), 121—129 (in Russian).

5. Fal'kovich I. S., Konovalenko A. A., Kalinichenko N. N., Ol'yak M. R., Gridin A. A., Bubnov I. N., Lekasho A., Ruker Kh. O. (2006) Variatsii parametrov struynoy struktury solnechnogo vetra na rasstoyaniyakh boleye 1 a. e. v 2003—2004 gg. Radiofizika i radioastronomiya, 11(1), 31—41 (in Russian).

6. Abranin E. P., Bruck Yu. M., Zakharenko V. V., Konovalenko A. A. (2001) The New Preamplification System for the UTR-2 Radio Telescope. Exp. Astron., 11, 85—112.

7. Bourgois G., Coles W. A., Daigne G., Silen J., Turunen T., Williams P. J. (1985) Measurements of the solar wind velocity with EISCAT. Astron. and Astrophys., 144, 452—462.

8. Bovkoon V. P., Zhouck I. N. (1981) Scintillations of cosmic radio sources in the decameter waveband. Astrophys. and Space Sci., 79, 165—180.

9. Breen A. R., Coles W. A., Grall R. R., Klinglesmith M. T., Markkanen J., Moran P. J., Tegid B., Williams P. J. S. (1996) EISCAT measurements of the solar wind. Ann. Geophys., 14, 1235—1245.

10. Coles W. A. (1996) A bimodal model of the solar wind speed. Astrophys. and Space Sci., 243, 87—96.

11. Dennison P. A., Hewish A. (1967) The solar wind outside the plane of the ecliptic. Nature, 213, 343—346.

12. Falkovich I. S., Konovalenko A. A., Kalinichenko N. N., Olyak M. R., Gridin A. A., Bubnov I. N., Brazhenko A. I., Lecacheux A., Rucker H. (2010)  Dispersion analysis of interplanetary scintillations at decameter wavelengths: First Results. Radio Phys. and Radio Astron., 1, 3—9.

13. Fallows R. A., Breen A. R., Dorrian G. D. (2008) Developments in the use of EISCAT for interplanetary scintillation. Ann Geophys., 26, 2229—2236.

14. Frehlich R. G. (1987) Space-time fourth moment of waves propagating in random media. Radio Sci., 22, 481—490.

15. Hewish A., Scott P. F., Wills D. (1964) Interplanetary scintillations of small diameter radio sources. Nature, 203,  1214—1217.

16. Jones D., Maude A. D. (1965) Evidence for wave motions in the E-region in the ionosphere. Nature, 206, 177—179.

17. Kojima K., Ishida Y., Maruyama K., Kakinuma T. (1982) An observation system of interplanetary scintillation at UHF. Proc. Res. Inst. Atmos. Nagoya Univ., 29, 61.

18. Konovalenko A. A., Sodin L. G., Zakharenko V. V., Zarka Ph., Ulyanov O. M., Sidorchuk M. A., Stepkin S. V., Tokarsky P. L., Melnik V. N., Kalinichenko N. N., and 62 other authors. (2016) The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42, 11—48.

19. Manoharan P. K., Ananthakrishnan S. (1990) Determination of solar-wind velocities using single-station measurements of interplanetary scintillations. Mon. Notic. Roy. Astron. Soc., 244, 691— 695.

20. McComas D. J., Riley P., Gosling J. T., Balogh A., Forsyth R. (1998) Ulysses’ rapid crossing of the coronal hole boundary. J. Geophys. Res., 103, 1955—1967.

21. Lotova N. A., Chashey I. V. (1973) Test for detection of fine structure of solar wind velocity. Astrophys. and Space Sci.,  20, 251—262.

22. Olyak M. R. (2012) Large-scale structure of solar wind and geomagnetic phenomena. J. Atmos. and Solar-Terr. Phys., 86, 34—40.

23. Olyak M. R. (2013) The dispersion analysis of drift velocity in the study of solar wind flows. J. Atmos. and Solar-Terr. Phys., 102, 185—191.

24. Phillips J. L., Balogh A., Bame S. J., Goldstein B. E., Gosling G. T., Hoeksema J. T., McComas D. J., Neugebauer M., Sheeley N. R., Wang Y. M. (1994) ULYSSES at 50 deg south: Constant immersion in the high-speed solar wind. Geophys. Res. Lett., 21, 1105—1108.

25. Phillips J. L., Bame S. J., Feldman W. C., Goldstein B. E., Gosling J. T., Hammond C. M., McComas D. J., Neugebauer M., Scime E. E., Suess S. T. (1995) ULYSSES solar wind plasma observations at high southerly latitudes. Science, 268, 1030— 1033.

26. Richardson I. G., Cane H. V. (2012) Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles. J. Space Weather and Space Clim., 2, A02.

27. Schwenn R. (1990) Large-scale structure of the interplanetary medium. (Eds Schwenn R., Marsch E.) Physics of the Inner Heliosphere II, Waves and Turbulence. Springer-Verlag. 98—181.

28. Shishova T. D. (1982) The influence of the large-scale inhomogeneities of the interplanetary plasma on the form of temporal spectra of the scintillations. Sov. Astron., 26, 731—741.

29. Vitkevich V. V., Vlasov V. I. (1970) Radio astronomical investigation of the drift of the inhomogeneous interplanetary plasma. Sov. Astron., 13, 669—676.

30. Zakharenko V. V., Konovalenko A. A., Zarka P., Ulyanov O. M., Sidorchuk M. A., Stepkin S. V., Koliadin V. L., Kalinichenko N. N., et al. (2016) Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT. J. Astron. Instrum., 5(4), 738—749.