Motion of the photospheric matter in the active region site with two Ellerman bombs

Heading: 
1Pasechnik, MN
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(2):3-27
https://doi.org/10.15407/kfnt2019.02.003
Start Page: Solar Physics
Language: Russian
Abstract: 

The results of the feature changes analysis of the line-of-sight velocities plasma in different layers of the photosphere of the active region NOAA 11024 under the action appeareing and developing two Ellerman bombs (EB-1 and EB-2) are presented. Spectral data with high spatial and temporal resolution (about 3 seconds) were obtained with the French- Italian solar telescope THEMIS on July 4, 2009. The observation time was 20 minutes. On the day of the observations, the AR was at the stage of a sharp increase in activity and the Ellerman bombs developed in the region of one of the three magnetic fluxes that were emerging at this time. The brightness of EB-1 decreased in the process of observations, while the brightness of EB-2 increased. We used a spectral region of ≈ 630 nm, which included four Fraunhofer lines that are formed over a wide range of photospheric heights: the neutral iron lines Fe I 630.15 nm, 630.25 nm, 630.35 nm and the titanium line Ti I 630.38 nm. Changes in the velocity and direction of motion of matter in the areas of Ellerman bombs and in their immediate vicinity at different levels of the photosphere and at different stages of EBs development are determined and analyzed. Studies have shown that at all levels of the AR photosphere predominantly upflows were observed. At the same time, a noticeable decrease of the line-of-sight velocity magnitudes and the amplitude of their oscillations was observed at the location of the EBs. This indicates that small-scale downward movements were superimposed on the large-scale upward motion of the plasma new magnetic flux. This conclusion is confirmed by the shape of photospheric line profiles. The profiles of strong lines had a red asymmetry. The velocity of the matter, determined by the component displacement, which stood out well in the red wing of the Fe I 630.35 nm line profiles, reached 2 km/s. Such a distribution of in the EB regions indicates that they consisted of several jets moving at different velocities and in different directions. In the central part of the EB-1 and EB-2 in the upper layer of the photosphere, the line-of-sight velocity varied between –1...0 km/s and –1...0.2 km/s, in the lower layer of the photosphere — between –1.6...–0.2 km/s and –1.1...0.25 km/s, respectively. In the vicinities of the Ellerman bombs, the variations of were oscillatory, the interval between oscillations was about 5 minutes. In the EB regions, the picture of quasiperiodic oscillations of the was disturbed, in many cases they occurred in antiphase. Based on the research, it can be concluded that the excitation caused by pulsed energy release as a result of successive magnetic reconnections associated with the release of a new magnetic flux propagated from the EB-1 area along the magnetic loop and initiated the formation of EB-2, then they developed as physically connected pair. The studied features of the temporal changes in the line-of-sight velocity of the chromospheric and photospheric matter in the Ellerman bomb regions and their vicinity indicate that during the development of EBs, multidirectional movement was observed — in the lower chromospheric layer the matter moved upward, and also streams formed that moved downward, reducing the velocities of the ascending plasma at the photospheric level. Such a distribution of velocities could cause magnetic reconnections that occurred in the layer between the upper photosphere and the lower chromosphere, where the core of the Нα line was formed.

Keywords: Ellerman bombs, line-of-sight velocities, photosphere, spectral research, Sun
References: 

1. Gurtovenko E. A., Kostyk R. I. (1989). Fraungoferov spektr i sistema solnechnykh sil oscillyatorov. K.: Naukova Dumka, 200 p. (in Russian)

2. Koval' A. N. (1964). O dvizheniyakh, svyazannykh s usami. Izvestiya KrAO. 32. P. 32—37. (in Russian)

3. Kostyk R. I., Shchukina N. G. Pyatiminutnye kolebaniya i tonkaya struktura fotosfery Solntsa. I. Kinematika i fizika nebesnykh tel. 1999. 15(1). C. 25— 37. (in Russian)

4. Kostyk R. I., Shchukina N. G. Pyatiminutnye kolebaniya i tonkaya struktura fotosfery Solntsa. II. Kinematika i fizika nebesnykh tel. 1999. 15(2). C. 135—144. (in Russian)

5. Kostyk R. I., Shchukina N. G. Tonkaya struktura konvektivnykh dvizheniy v fotosfere Solntsa: nablyudeniya i teoriya. Astronomicheskii zhurnal. 2004. 81(9). P. 846—858. (in Russian)

6. Pasechnik M. N. (2014). Plasma motions in the solar loop of emerging magnetic flux. Kinematics Phys. Celestial Bodies.  30(4). P. 161—172.
https://doi.org/10.3103/S0884591314040047

7. Pasechnik M. N. (2016). Spectral study of a pair of Ellerman bombs. Kinematics Phys. Celestial Bodies. 2016. 32(2). P. 55—69.
https://doi.org/10.3103/S0884591316020057

8. Pasechnik M. N. (2018). Spectral Study of Ellerman Bombs. Photosphere. Kinematics Phys. Celestial Bodies. 2018. 34(2). C. 68—81.
https://doi.org/10.3103/S0884591318020071

9. Severnyy A. B. (1957). Nekotoryye rezul'taty issledovaniya nestatsionarnykh protsessov na Solntse. Astronomicheskii zhurnal. 34. S. 684—693. (in Russian)

10. Archontis V., Hood A. W. (2009). Formation of Ellerman bombs due to 3D flux emergence. Astron. and Astrophys. 508. P. 1469—1483.
https://doi.org/10.1051/0004-6361/200912455

11. Berlicki A., Heinzel P. (2014). Observations and NLTE modeling of Ellerman bombs. Astron. and Astrophys. 567. P. 1—10. Vol. 567, id. A110, 10 p.
https://doi.org/10.1051/0004-6361/201323244

12. Berlicki A., Heinzel P., Avrett E. H. (2010). Photometric analysis of Ellerman bombs. Mem. Soc. astron. ital. 81. P. 646—652.

13. Chae J., Moon Y.-J., Park S.-Y. (2003). Observational test of chromospheric magnetic reconnection. J. Korean Astron. Soc. 36. S1. P. 13—20.
https://doi.org/10.5303/JKAS.2003.36.spc1.013

14. Ellerman F. (1917). Solar hydrogen “bombs”. Astrophys. J. 46. P. 298—301.
https://doi.org/10.1086/142366

15. Engell A. J., Siarkowski M., Gryciuk M., et al. (2011). Flares and their underlying magnetic complexity. Astrophys. J. 726. P. 12—20.
https://doi.org/10.1088/0004-637X/726/1/12

16. Fang C., Tang Y. H., Xu Z., et al. (2006). Spectral analysis of Ellerman bombs. Astrophys. J. 643. P. 1325—1336.
https://doi.org/10.1086/501342

17. Georgoulis M. K., Rust D. M., Bernasconi P. N., et al. (2002). Statistics, morphology, and energetics of Ellerman bomb. Astrophys. J. 575. P. 506—528.
https://doi.org/10.1086/341195

18. Grigor’ev V. M., Ermakova L. V., Khlystova A. I. (2011). The dynamics of photospheric line-of-sight velocities in emerging active regions. Astron. Reps. 55(29). P. 163—173.
https://doi.org/10.1134/S1063772911020041

19. Guglielmino S. L., Bellot Rubio L. R., Zuccarello F., et al. (2010). Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere. Astrophys. J. 724. P. 1083—1098.
https://doi.org/10.1088/0004-637X/724/2/1083

20. Hashimoto Yu., Kitai R., Ichimoto K., et al. (2010). Internal fine structure of Ellerman bombs. Publs Astron. Soc. Jap. 62. P. 879—891.
https://doi.org/10.1093/pasj/62.4.879

21. Herlender M., Berlicki A. (2011). Multi-wavelength analysis of Ellerman bomb light curves. Cent. Eur. Astrophys. Bull. 35. P. 181—186.

22. Kitai R. (1983). On the mass motions and the atmospheric states of moustaches. Solar Phys. 87. P. 135—154.
https://doi.org/10.1007/BF00151165

23. Kitai R. (2012). Ellerman bomb as a manifestation of chromospheric fine scale activity. The Fifth Hinode Science Meeting. ASP Conference Series, Vol. 456, Proc. of a conference held 10-14 October 2011 at Royal Sonesta Hotel, Cambridge, Massachusetts. Edited by L. Golub, I. De Moortel, and T. Shimizu. San Francisco: Astron. Soc. Pacif. P. 81.

24. Kondrashova N. N., Pasechnik M. N., Chornogor S. N., et al. (2013). Atmosphere dynamics of the active region NOAA 11024. Solar. Phys. 284(2). P. 499—513.
https://doi.org/10.1007/s11207-012-0212-5

25. Kozu H., Kitai R., Brooks, D. H., et al. (2006). Horizontal and vertical flow structure in emerging flux regions. Publs Astron. Soc. Jap. 58. P. 407—421.
https://doi.org/10.1093/pasj/58.2.407

26. Kurokawa H., Kawaguchi I., Funakoshi Y., et al. (1982). Morphological and evolutional features of Ellerman bombs. Solar. Phys. 79. P. 77—84.
https://doi.org/10.1007/BF00146974

27. Lites B. W., Skumanich A., Martinez Pillet V. (1998). Vector magnetic fields of emerging solar flux I. Properties at the site of emergence. Astron. and Astrophys. 333. P. 1053—1068.

28. Matsumoto T., Kitai R., Shibata K., et al. (2008). Height dependence of gas flows in an Ellerman bomb. Publ. Astron. Soc. Jap. 60. P. 95—102.
https://doi.org/10.1093/pasj/60.1.95

29. Matsumoto T., Kitai R., Shibata K., et al. (2008). Cooperative observation of Ellerman bombs between the Solar Optical Telescope aboard Hinode and Hida/Domeless Solar Telescope. Publ. Astron. Soc. Jap. 60. P. 577—585.
https://doi.org/10.1093/pasj/60.3.577

30. Nelson C. J., Doyle J. G., Erdelyi R., et al. (2013). Statistical Analysis of Small Ellerman Bomb events. Solar. Phys. 283(2). P. 307—323.
https://doi.org/10.1007/s11207-012-0222-3

31. Nelson C. J., Shelyag S., Masthioudakis M., et al. (2013). Ellerman bombs — evidence for magnetic reconnection in the lower solar atmosphere. Astrophys. J. 779. P. 125—135.
https://doi.org/10.1088/0004-637X/779/2/125

32. Pariat E., Schmieder B., Berlicki A., et al. (2007). Spectrophotometric analysis of Ellerman bombs in the Ca II, Нα, and UV range. Astron. and Astrophys. 473. P. 279— 289.
https://doi.org/10.1051/0004-6361:20067011

33. Qiu J., Ding M. D., Wang H., et al. (2000). Ultraviolet and Нα emission in Ellerman bombs. Astrophys. J. 544. P. LI 57—L161.
https://doi.org/10.1086/317310

34. Rezaei R., Beck C. (2015). Multiwavelength spectropolarimetric observations of an Ellerman bomb. Astron. and Astrophys. 582. 13 p. id. A104.
https://doi.org/10.1051/0004-6361/201526124

35. Rutten R. J. (2016). Н features with hot onsets I. Ellerman bombs. Astron. and Astrophys. 590. P. 124—137.
https://doi.org/10.1051/0004-6361/201526489

36. Socas-Navarro H., Martínez Pillet V., Elmore D., et al. (2006). Spectro-polarimetric observations and non-LTE modeling of ellerman bombs. Solar. Phys. 235(1-2). P. 75—86.
https://doi.org/10.1007/s11207-006-0049-x

37. Valori G., Green L. M., Demouli P., et al. (2012). Nonlinear force-free extrapolation of emerging flux with a global twist and serpantine fine structures. Solar Phys. 278(1). P. 73—97.
https://doi.org/10.1007/s11207-011-9865-8

38. Vissers G. J. M., Rouppe van der Voort L. H. M., Rutten R. J. (2013). Ellerman bombs at high resolution. II. Triggering, visibility, and effect on upper atmosphere. Astrophys. J. 774. P. 32—46.
https://doi.org/10.1088/0004-637X/774/1/32

39. Watanabe H., Kitai R., Okamoto K., et al. (2008). Spectropolarimetric observation of an emerging flux region: triggering mechanisms of Ellerman bombs. Astrophys. J. 684. P. 736—746.
https://doi.org/10.1086/590234

40. Watanabe H., Vissers G., Kitai R., et al. (2011). Ellerman bombs at high resolution: 1. Morphological evidence for photospheric reconnection. Astrophys. J. 736. P. 71—83.
https://doi.org/10.1088/0004-637X/736/1/71

41. Zachariadis Th. G., Alissandrakis C. E., Banos G. (1987). Observations of Ellerman bombs in Нα. Solar Phys. 108(2). P. 227—236.
https://doi.org/10.1007/BF00214163