Fraunhofer lines in the transition from the center to the limb of the solar disk

Heading: 
1Osipov, SN, 1Vasilieva, IE
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(2):50-64
https://doi.org/10.15407/kfnt2019.02.050
Start Page: Solar Physics
Language: Russian
Abstract: 

The two-dimensional spectrа of the Sun (from the center to the limb of the disk) in sections = 532.0...532.8 and 539.1...539.9 nm were recorded at the ATsU-5 telescope of the National Academy of Sciences of Ukraine by replacing the regular main mirror with a short-focus one (with a focal length of 1 m). The advantage of the applied method is the simultaneity of spectrum recording for different heliocentric positions of the solar disk. The reductions of observational data for the influence of scattered light in the spectrograph, atmospheric stray light, instrumental contour of the spectrograph, and some aberrations were carried out. The center/limb spectral relations are compared with the available literature data. Data on variations of spectral line profiles in the transition from the center to the limb of the solar disk are obtained for 11 spectral lines. The revealed non-monotony of such changes is explained by inhomogeneities of physical conditions on the surface of the Sun. In general, the depths of the studied Fe I lines demonstrate a tendency to decrease the strength of the lines when going to the limb. The line full widths at half maximum of most lines increase to the limb of the disk. Equivalent widths show differently directed variation. Changes of the parameters of the Mn I 539.4 nm line stand out from the general row: all three parameters studied grow to the edge of the disk, although at the extreme limb the depth and equivalent width also begin to decrease. Measured limb-effect of lines de­monstrates the highest value when comparing the positions of the core of weak lines. Strong lines show the maximum limb effect when comparing the middle part of the bisectors.

Keywords: бисектор, лимб-эффект, потемнение к краю, Солнце, спектральные линии, фотосфера
References: 

1. Atroshchenko I. N., Gadun A. S., Gopasyuk S. I., et al. (1991). Variatsii global'nykh kharakteristik Solntsa. K.: Nauk. dumka. 182—231.

2. Grigor'yeva S. A., Teplitskaya R. B., Ozhogina O. A. (2009). Potemneniye k krayu diska v kryl'yakh linii K Ca II. Sravneniye s model'yu srednego spokoynogo Solntsa. Astron. zhurn. 86(6). 616—624.

3. Gurtovenko E. A., Kostyk R. I. (1989). Fraungoferov spektr i sistema solnechnykh sil ostsillyatorov. K.: Nauk. dumka, 200 p.

4. Zaydel' A. N., Ostrovskaya G. V., Ostrovskiy Yu. I. (1976). Tekhnika i praktika spektroskopii. M.: Nauka, 392 c.

5. Makarova E. A., Roshchina E. M., Sarychev A. P. (1991). Sredniye dannyye o potemnenii diska Solntsa k krayu v kvazikontinuume v spektral'noy oblasti 300—2400 nm. Astron. zhurn. 68(4). 885—889.

6. Osipov S. N. (1987). Potemneniye k krayu solnechnogo diska s uchetom liniy pogloshcheniya. Kinematika i fizika nebes. tel. 3(5). 57—64.

7. Osipov S. N. (2015). Instrumental profile of the spectrograph of the ATsU-5 solar telescope of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Kinematics Phys. Celestial Bodies. 31(5). P. 261—266.
https://doi.org/10.3103/S0884591315050086

8. Abt A. (1952). Hyperfine structure in the solar spectrum. Astrophys. J. 115. 199—205.
https://doi.org/10.1086/145532

9. Allende Prieto C., Asplund M., Fabiani Bendicho P. (2004). Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations. Astron. and Astrophys. 423. 1109—1117.
https://doi.org/10.1051/0004-6361:20047050

10. Ambruoso P., Marmolino C., Gomez M. T., Severino G. (1992). The center-to-limb variations of four Ca I lines in the photospheric spectrum at 6500 Å. Solar Phys. 141(1). 35—49.
https://doi.org/10.1007/BF00155902

11. Balthasar H. (1984). Asymmetries and wavelengths of solar spectral lines and the solar rotation determined from Fourier-transform spectra. Solar Phys. 93. 219—241.
https://doi.org/10.1007/BF02270836

12. Balthasar H. (1985). On the contribution of horizontal granular motions to observed limb-effect curves. Solar Phys. 99. 31—38.
https://doi.org/10.1007/BF00157296

13. Brault J. W. (1978). Solar Fourier transform spectroscopy. Osserv. Mem. Oss. Astrofis. Arcetri. 106. 33.

14. Brault J. W. (1985). Fourier transform spectroscopy. High Resolution in Astronomy. Fifteenth Advanced Course of the Swiss Society of Astronomy and Astrophysics (Eds A.O. Benz, M. Huber, and M. Mayer). 3—61.

15. Doyle J. G., Jevremović D., Short C. I., Hauschildt P. H., Livingston W., Vince I. (2001). Solar Mn I 5432/5395 Е line formation explained. Astron. and Astrophys. 369. L13—L16.
https://doi.org/10.1051/0004-6361:20010223

16. Dravins D. (2008). “Ultimate” information content in solar and stellar spectra. Photospheric line asymmetries and wavelength shifts. Astron. and Astrophys. 492. 199—213.
https://doi.org/10.1051/0004-6361:200810481

17. Fathivavsari H., Ajabshirizadeh A., Koutchmy S. (2014). Spectral atlases of the Sun from 3980 to 7100 Å at the center and at the limb. Astrophys. and Space Sci. 353(2). P. 347—355.
https://doi.org/10.1007/s10509-014-2073-x

18. Faurobert M., Ricort G., Aime C. (2013). Empirical determination of the temperature stratification in the photosphere of the quiet Sun. Astron. and Astrophys. 554. id. A116. 10 p.
https://doi.org/10.1051/0004-6361/201321259

19. Grigoryeva S. A., Turova I. P. (1998). Center-to-limb variations of the Ca II H and K lines in sunspot umbrae. Solar Phys. 179(1). 17—30.
https://doi.org/10.1023/A:1005058906009

20. Khomenko E. V., Kostik R. I., Shchukina N. G. (2001). Five-minute oscillations above granules and intergranular lanes. Astron. and Astrophys. 369. 660—671.
https://doi.org/10.1051/0004-6361:20010129

21. Kiselman D., Pereira T. M. D., Gustafsson B., Asplund M., Meléndez J., Langhans K. (2011). Is the solar spectrum latitude-dependent? An investigation with SST/TRIPPEL. Astron. and Astrophys. 535. id.A14. 9 p.
https://doi.org/10.1051/0004-6361/201117553

22. Kramida A., Ralchenko Yu., Reader J., and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.5.6), [Online]. URL: https://physics.nist.gov/asd [2018, November 1]. National Institute of Standards and Technology, Gaithersburg, MD.

23. Langhans K., Schmidt W. (2002). Center-to-limb-variation of the G-band lines at 430.5 nm. Astron. and Astrophys. 382. 312—318.
https://doi.org/10.1051/0004-6361:20011582

24. Moore C. E. (1972). A Multiplet table of astrophysical interest. NSRDS-NBS40 — 261 p.
https://doi.org/10.6028/NBS.NSRDS.40

25. Neckel D., Labs H. (1984). The solar radiation between 3300 and 12500 Å. Solar Phys. 90(2). P. 205—358.
https://doi.org/10.1007/BF00173953

26. Pereira T. M. D., Asplund M., Collet R., Thaler I., Trampedach R., Leenaarts J. (2013). How realistic are solar model atmospheres? Astron. and Astrophys. 554. id. A118. 16 p.
https://doi.org/10.1051/0004-6361/201321227

27. Pierce A. K., Slaughter C. D. (1977). Solar limb darkening I: λλ (3033—7297). Solar Phys. 51. 25—41.
https://doi.org/10.1007/BF00240442

28. Rodriguez Hidalgo I., Collados M., Vazquez M. (1994). Variations of properties of the quiet photosphere along the equator and the central meridian: Spectroscopic results. Astron. and Astrophys. 283(1). 263—274.

29. Stenflo J. O. (2015). FTS atlas of the Sun’s spectrally resolved center-to-limb variation. Astron. and Astrophys. 573. A74.
https://doi.org/10.1051/0004-6361/201424685

30. Stenflo J. O., Twerenbold D., Harvey J. W., Brault J. W. (1983). Coherent scattering in the solar spectrum. — Survey of linear polarization in the range 4200—9950 Å. Astron. and Astrophys. Suppl. Ser. 54. 505—514.

31. Supriya H. D., Smitha H. N., Nagendra K. N., Stenflo J. O., Bianda M., Ramelli R., Ravindra B., Anusha L. S. (2014). Center-to-limb observations and modeling of the Ca I 4227 Å line. Astrophys. J. 793(1). id. 42. 13 p.
https://doi.org/10.1088/0004-637X/793/1/42

32. Thackeray A. D. (1937). The excitation of emission lines in late-type variables. Astrophys. J. 86. 499—508.
https://doi.org/10.1086/143884

33. Thevenin F. (1989). Oscillator strengths from the solar spectrum. Astron. and Astrophys. Suppl. Ser. 77. 137—154.

34. Vince I., Vince O., Ludmany A., Andriyenko O. (2005). The Mn I 539.47 nm line variation in solar active regions. Solar Phys. 229. 273—285.
https://doi.org/10.1007/s11207-005-8109-1

35. Vitas N., Viticchie B., Rutten R. J., Vogler A. (2009). Explanation of the activity sensitivity of Mn I 5394.7 Å. Astron. and Astrophys. 499. 301—312.
https://doi.org/10.1051/0004-6361/200810600