Magnetic field of the Ap star 33 Lib: Study in different spectral lines

1Butkovskaya, VV, 1Plachinda, SI
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(2):65-80
https://doi.org/10.15407/kfnt2019.02.065
Start Page: Physics of Stars and Interstellar Medium
Language: Russian
Abstract: 

Ap stars are chemically peculiar main sequence stars whose atmospheres have an anomalous chemical composition compared to the Sun. The abnormal chemical composition of the peculiar stars is due to the diffusion of chemical elements in their atmospheres under the joint action of the radiation pressure and the gravitational settling. Depending on which of the processes prevails, the chemical element either «sinks» and accumulates in the deeper layers, or it floats and accumulates in the upper layers of the stellar atmosphere. In addition to the non-uniform distribution of chemical elements with depth, there are inhomogeneities of chemical elements on the surface of peculiar stars in the form of spots enriched or depleted in one or another chemical element. Ap stars have strong global magnetic fields with an intensity from a few hundred to tens of thousands of Gauss. These fields, as a rule, have a simple dipole configuration that is stable in time at least at time intervals of several decades. One of the unexplored effects observed in chemically peculiar stars is the fact that the magnetic field measured using different spectral lines can differ significantly from each other. In the paper, we present the results of measuring the longitudinal magnetic field of a chemically peculiar Ap star 33 Lib in different spectral lines (N = 180). High-resolution circularly polarized spectra collected over 4 nights in 2006 with the 3.6 m CFHT ESPaDOnS were taken from the open CADC database. The magnetic field was calculated using Single Line method by measuring Zeeman splitting of individual spectral lines. It was established that the averaged over all nights longitudinal magnetic field is e> = 274.9 ± 2.7 mT. It was found, that there are spectral lines, including spectral lines of the same chemical element, which demonstrate significantly different magnetic field. The weakest magnetic field is measured in the cores of the hydrogen lines Hα and Hβ, as well as in the Y and Pr lines. The study of the dependence of the magnitude of the magnetic field on the parameters of the spectral lines has showed that strongest magnetic field values are measured in the weak lines with small Lande factors. The reason for this difference in the measured magnetic field values can be both the inhomogeneous magnetic field in the star’s atmosphere, and the inhomogeneous distribution of chemical elements over the surface and/or with depth, or all of these factors simultaneously.

Keywords: magnetic field, peculiar stars, spectropolarimetry, stellar atmospheres
References: 

1. Babcock H. W. (1958). A Catalog of Magnetic Stars. Astrophys. J. Suppl. Ser 3. P.141—210.
https://doi.org/10.1086/190035

2. Braithwaite J. (2008). On non-axisymmetric magnetic equilibria in stars. Mon. Notic. Roy. Astron. Soc. 386. 1947—1958.
https://doi.org/10.1111/j.1365-2966.2008.13218.x

3. Braithwaite J. (2009). Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components. Mon. Notic. Roy. Astron. Soc. 397. P. 763—774.
https://doi.org/10.1111/j.1365-2966.2008.14034.x

4. Braithwaite J., Spruit H. C. (2004). A fossil origin for the magnetic field in A stars and white dwarfs. Nature. 431. 819—821.
https://doi.org/10.1038/nature02934

5. Butkovskaya V., Baklanova D., Han I., Kim K. M., Lyashko D., Mkrtichian D., Plachinda S., Valyavin G., Tsymbal V. (2008). Rotational variation of the magnetic field of beta CrB in different spectral lines. Odessa Astron. Publs. 21. P. 19—22.

6. Butkovskaya V., Plachinda S. (2007). A study of the β Cephei star γ Pegasi: binarity, magnetic field, rotation, and pulsations. Astron. and Astrophys. 469. P. 1069—1076.
https://doi.org/10.1051/0004-6361:20065563

7. Donati J.-F., Landstreet J. D. (2009). Magnetic fields of nondegenerate stars. Ann. Rev. Astron. and Astrophys. 47. P. 333—370.
https://doi.org/10.1146/annurev-astro-082708-101833

8. Donati J.-F., Semel M., Carter B. D., Rees D. E., Collier Cameron A. (1997). Spectropolarimetric observations of active stars. Mon. Notic. Roy. Astron. Soc. 291. 658—682.
https://doi.org/10.1093/mnras/291.4.658

9. Duez V., Braithwaite J., Mathis S. (2010). On the stability of non-force-free magnetic equilibria in stars. Astrophys. J. 724. L34—L38.
https://doi.org/10.1088/2041-8205/724/1/L34

10. Han Inwoo, Valyavin G., Galazutdinov G., Plachinda S., Butkovskaya V., Lee B. C., Kim Kang-Min, Jeong Gwanghui, Romanyuk I., Burlakova T. (2018). Magnetic field and orbit of the star β CrB. Mon. Notic. Roy. Astron. Soc. 479. 1427—1432.
https://doi.org/10.1093/mnras/sty1646

11. Kochukhov O. (2017). Doppler imaging of chemical spots on magnetic Ap/Bp stars. Numerical tests and assessment of systematic errors. Astron. and Astrophys. 597. 15 p. id.A58.
https://doi.org/10.1051/0004-6361/201629768

12. Kurtz D. W. (1982). Rapidly oscillating AP stars. Mon. Notic. Roy. Astron. Soc. 200. 807—859.
https://doi.org/10.1093/mnras/200.3.807

13. Mathis S., Zahn J.-P. (2005). Transport and mixing in the radiation zones of rotating stars. II. Axisymmetric magnetic field. Astron. and Astrophys. 440. 653—666.
https://doi.org/10.1051/0004-6361:20052640

14. Mathys G. (2017). Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra. Astron. and Astrophys. 601. id. A14. 90 p.
https://doi.org/10.1051/0004-6361/201628429

15. Mathys G., Hubrig S. (1997). Spectropolarimetry of magnetic stars. VI. Longitudinal field, crossover and quadratic field: New measurements. Astron. and Astrophys. Suppl. Ser. 124. 475—497.
https://doi.org/10.1051/aas:1997366

16. Mathys G., Hubrig S., Landstreet J. D., Lanz T., Manfroid J. (1997). The mean magnetic field modulus of AP stars. Astron. and Astrophys. Suppl. Ser. 123. 353—402.
https://doi.org/10.1051/aas:1997103

17. Michaud G. (1970). Diffusion Processes in Peculiar a Stars. Astrophys. J. 160. 641—658.
https://doi.org/10.1086/150459

18. Michaud G., Megessier C., Charland Y. (1981). Diffusion models for magnetic Ap-Bp stars. Astron. and Astrophys. 103. 244—262.

19. Romanyuk I. I., Semenko E. A., Kudryavtsev D. O. (2007). Results of magnetic field measurements of CP stars carried out with the Russian 6-m telescope. I. Observations in 2007. Astrophys. Bull. 69. 427—438.
https://doi.org/10.1134/S1990341314040051

20. Ryabchikova T., Nesvacil N., Weiss W. W., Kochukhov O., Stütz Ch. (2004). The spectroscopic signature of roAp stars. Astron. and Astrophys. 423. 705—715.
https://doi.org/10.1051/0004-6361:20041012

21. Ryabchikova T., Piskunov N., Kurucz R. L., Stempels H. C., Heiter U., Pakhomov Yu., Barklem P. S. (2015). A major upgrade of the VALD database. Phys. Scripta. 90(5). Article id. 054005.
https://doi.org/10.1088/0031-8949/90/5/054005

22. Schöller M., Hubrig S. (2014). Magnetic chemically peculiar stars. In «Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars» / Eds E. Niemczura, B. Smalley, W. Pych. Springer. 9 p. arXiv:1501.04225.
https://doi.org/10.1007/978-3-319-06956-2_22

23. Semel M. (1989). Zeeman-Doppler imaging of active stars. I. Basic principles. Astron. and Astrophys. 225. 456—466.

24. Semel M., Li J. (1996). Zeeman-Doppler Imaging of Solar-Type Stars: Multi Line Technique. Solar Phys. 164. 417—428.
https://doi.org/10.1007/978-94-009-0231-2_35

25. van den Heuvel E. P. (1971). Zeeman observations of peculiar and metallic-line A stars. Astron. and Astrophys. 11. 461—467.

26. Wolff S. C. (1975). The distribution of periods of the magnetic A-type stars. Astrophys. J. 202. 127—136.
https://doi.org/10.1086/153958