The physical effects of Lipetsk meteoroid. 3

1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(6):34-61
Start Page: Dynamics and Physics of Bodies of the Solar System
Language: Russian

Comprehensive modeling studies of the processes induced in all geospheres by the passage and explosion of the meteoroid near the city of Lipetsk (Russia) on June 21, 2018 have been conducted. Magnetic, electric, electromagnetic, ionospheric, and seismic effects, the effects of acoustic-gravity waves have been estimated. The magnetic effect of turbulence has been shown to be insignificant. The magnetic effect of the ionospheric currents and the current in the wake of the meteoroid could be substantial (~1 nT). Under the action of an external electric field, a transient current pulse with the current density up to 104 A could occur. The electrostatic effect could be accompanied by the accumulation of an electric charge of 1 mC producing the electric field intensity of 0.01...1 MV/m. The flow of the electric current in the wake of the meteoroid could result in the generation of an electromagnetic pulse in the 40...80 kHz band with the electric field intensity of 1...10 V/m. The electromagnetic effect of infrasound has been determined to be significant (1...10 V/m and 1...10 nT). The absorption of the shock wave at ionospheric dynamo region altitudes (100...150 km) could generate secondary atmospheric gravity waves with the 0.1...1 relative amplitude. The passage of the meteoroid acted to produce a plasma wake not only in the lower but also in the upper atmosphere in the range no less than 1,000 km. The possibility of appearing of the electrophonic effect, the generation of the ion and magnetic sound by infrasound, as well as the generation of gradient-drift and drift-dissipative instabilities are discussed. A conclusion is drawn that magnetic, electric, and electromagnetic effects dealt with in this paper appreciably fill up gaps in the theory of physical effects produced by meteoroids in the Earth — atmosphere — ionosphere — magnetosphere system. The magnitudes of magnetic, electric, electromagnetic, ionospheric, and acoustic effects were significant. The magnitude of the earthquake caused by the meteoroid explosion did not exceeded 1.7. The mean rate of the fall of celestial bodies similar to the Lipetsk meteoroid is equal to 0.68 yr-1.

Keywords: acoustic effects, acoustic-gravity waves, complex simulation, electrical effects, electromagnetic effects, ionospheric effects, Lipetsk meteoroid, magnetic effects, plasma trail, seismic effects

1.Alpatov V. V., Burov V. N., Vagin J. P., Galkin K. A., Givishvili G. V., Gluhov J. V., Davidenko D. V., Zubachev D. S., Ivanov V. N., Karhov A. N., Kolomin M. V., Korshunov V. A., Lapshin V. B., Leshenko L. N., Lysenko D. A., Minligareev V. T., Morozova M. A., Perminova E. S., Portnyagin J. I., Rusakov J. S., Stal N. L., Syroeshkin A. V., Tertyshnikov A. V., Tulinov G. F., Chichaeva M. A., Chudnovsky V. S., Shtyrkov A. Y. (2013) Geophysical conditions at the explosion of the Chelyabinsk (Chebarkulsky) meteoroid in February 15, 2013. M.: FGBU IPG Publ. (in Russian).

2.Asteroids and comets. Chelyabinsk event and the study of meteorite falling into the lake Chebarkul. Materials of international scientific practical conference, 21—22 June 2013, Chebarkul. (2013) (In Russian).

3.Solar System Research. (2013) 47(4). (Thematical issue). (in Russian).

4.Atmosphere: A Handbook. (1991). Leningrad: Gidrometeoizdat. (In Russian).

5.Borisov N. D., Gurevich A. V., Milih G. M. (1985) Artificially Ionized Region in the Atmosphere. Moscow: IZMIRAN (In Russian).

6.Bronshten V. A. (1983) Physics of Meteor Phenomena. Springer (in Russian).

7.Bronshten V. A. (1983) A magneto-hydrodynamic mechanism for generating radio waves by bright fireballs. Solar System Res. 17(2), 70—74.

8.Bronshten V. A. (1991) Electrical and electromagnetic phenomena associated with meteor flight. Solar System Res. 25(2), 93—104.

9.Bronshten V. A. (2002) Magnetic effect of the Tungus meteorite. Geomagnetism and Aeronomy. 42(6), 816—818.

10.Golitsyn G. S., Grigoriev G. I., Dokuchaev V. P. (1977) Radiation of acoustic gravity waves during the motion of meteors in the atmosphere. Izvestiya Rossiyskoy Akademii nauk. Fizika atmosfery i okeana, 13(9). 926—936 (In Russian).

11.Goldshtein L. D., Zernov N. V. (1971) Electromagnetic fields and waves, Moscow: Sov. radio. (In Russian).

12.Gurevich A. V., Shvartsburg A. B. (1973) Nonlinear theory of radio wave propagation in the ionosphere. Moscow: Nauka. (In Russian).

13.Catastrophic Impacts of Cosmic Bodies. (2005) (Eds Adushkin V. V., Nemchinov I. V.). — M.: ECC Akademkniga Publ. 310 p. (in Russian).

14.Kovaleva I. H., Kovalev A. G., Popel S. I., Popova O. P. (2013) The electromagnetic effects generated in the Earth ionosphere during the meteoroid falling. Triggernyie effekty v geosistemah. Materialy Vserossiyskogo seminara-soveschaniya. Eds V. V. Adushkin, G. G. Kocheryan. Moscow: GEOS. 41—50. (In Russian).

15.Kovaleva I. H., Kovalev A. G., Popova O. P., et al. (2014) The electromagnetic effects generating in the Earth ionosphere during the meteoroid falling. Dinamicheskije processy v geospherah. Vypusk 5. Geophysicheskije effekty padenija Chelyabinskogo meteoroida: sbornik nauchnyh trudov IDG RAN. Special’nyj vypusk. Moscow: GEOS. 26—48 (In Russian).

16.Liatskij V. B. (1978) The Current Systems of the magnetospheric and ionospheric disturbances. Leningrad: Nauka. (In Russian).

17.The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. (2014). (Ed. Antipin N. A.). Chelyabinsk: Kamennyi poyas Publ. (in Russian).

18.Ol'khovatov A. Yu. (1993) The electrophone sounds mechanisms generation analysis that accompany bolide effects. Geomagnetism and Aeronomy. 33(2), 154—155 (In Russian).

19.Raizer Yu. L. (2003) A debate over the acquisition of an electric potential by a meteoroid. Solar System Research. 37(4), 333—335.

20.Soloviev S. P., Rybnov Yu. S., Kharlamov V. A. (2015) The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. Triggernyie effektyi v geosistemah. Materialyi tretego Vserossiyskogo seminara-soveschaniya. Eds V. V. Adushkina, G. G. Kocheryana, Moscow: GEOS. 317—326 (In Russian).

21.Surkov V. V. (2000) Electromagnetic effects caused by earthquakes and explosions. Moscow: MEPhI. (In Russian).

22.Chernogor L. F. (2003) Physics of Earth, atmosphere, and geospace from the standpoint of system paradigm. Radiophyzika i Radioastronomija. 8 (1), 59—106 (In Russian).

23.Chernogor L. F. (2006) Earth - atmosphere - ionosphere - magnetosphere as opened dynamic nonlinear physical system. 1. Nelinejnyj mir. 4(12). 655—697 (In Russian).

24.Chernogor L. F. (2007) Earth - atmosphere - ionosphere - magnetosphere as opened dynamic nonlinear physical system. 2. Nelinejnyj mir. 5(4). 225—246 (In Russian).

25.Chernogor L. F. (2008) On the nonlinearity in nature and science. Kharkiv: V. N. Karazin National University. (In Russian).

26.Chernogor L. F. (2010) The ways in which variations in space and tropo spheric weather impact the biosphere (humans). Phyzyologichnyj journal. 56(3). 25—40 (In Russian).

27.Chernogor L. F. (2011) Oscillations of the geomagnetic field caused by the flight of Vitim Bolide on September 24, 2002. Geomagnetism and Aeronomy. 51(1), 116—130.

28.Chernogor L. F. (2012) Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University. (In Russian).

29.Chernogor L. F. (2013) Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite event. Radiophizika i electronica. 4 (18) (3), 47—54 (In Russian).

30.Chernogor L. F. (2013) Plasma, electromagnetic and acoustic effects of meteorite «Chelyabinsk». Engin. Phys. 8, 23—40 (In Russian).

31.Chernogor L. F. (2013) Physical effects of the Chelyabinsk meteorite passage. Dopovidi Natsionalnoi akademii nauk Ukrainy. 10, 97—104 (In Russian).

32.Chernogor L. F. (2014) Geomagnetic Field effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 54 (5), 613—624.

33.Chernogor L. F. (2014) Physics of high-power radio emissions in geospace. Kharkiv: V. N. Karazin National University. (In Russian).

34.Chernogor L. F. (2015) Ionospheric effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 55, No. 3, 353—368.

35.Chernogor L. F. (2017) Disturbance in the lower ionosphere that accompanied the re-entry of the Chelyabinsk cosmic body. Cosmic Research. 55(5). 323—332.

36.Chernogor L. F. (2017) Infrasound ectric and magnetic effects in atmosphere. Global electric circuit: Proceedings of 3rd All-Russian Conference. «Borok» geophys. observ. (O. Yu. Shmidt RAS Earth Phys. Inst. filial). Yaroslavl: Filigran, 11—12 (In Russian).

37.Chernogor L. F. (2018) Physical effects of the Romanian meteoroid. 1. Space Science and Technology. 24(1). 49—70 (In Russian).

38.Chernogor L. F. (2018) Physical effects of the Romanian meteoroid. 2. Space Science and Technology. 24(2). 18—35 (In Russian).

39.Chernogor L. F. (2018) Magnetospheric Effects during the Approach of the Chelyabinsk Meteoroid. Geomagnetism and Aeronomy. 58(2). 252—265.

40.Chernogor L. F. (2019) The physical effects of Lipetsk meteoroid. 1. Kinematics Phys. Celestial Bodies. 35(4) 37—59.

41.Chernogor L. F. (2019) The physical effects of Lipetsk meteoroid. 2. Kinematics Phys. Celestial Bodies. 35(5). 25—47.

42.Chernogor L. F., Barabash V. V. (2014) Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinematics Phys. Celestial Bodies. 30(3) 126—136.

43.Chernogor L. F., Garmash K. P. (2013) Disturbances in geospace associated with the Chelyabinsk meteorite passage. Radio Phys. Radio Astron. 18(3). 231—243 (In Russian).

44.Chernogor L. F., Liashchuk O. I. (2017) Infrasound observations of the bolide explosion over Romania on January 7, 2015. Kinematics Phys. Celestial Bodies. 33(6). 276—290 .

45.Chernogor L. F., Milovanov Yu. B., Fedorenko V. N., Tsymbal A. M. (2013) Satellite observations of ionospheric disturbances which followed the Chelyabinsk meteorite passage. Space Science and Technology. 19 (6), 38—46 (In Russian).

46.Yampolski Y. M., Zalizovski A. V., Litvinenko L. M., Lizunov G. V., Groves K., Moldwin M. (2004) Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. 9(2). 130—151 (In Russian).

47.Beech M., Foschini L. A. (1999) A space charge model for electrophonic bursters. Astron. Astrophys. 345. L27—L31.

48.Beech M., Brown P., Jones J. (1995) VLF detection of fireballs. Earth Moon Planets. 68, 181—188.

49.Brown P., Spalding R. E., Re Velle D. O., et al. (2002) The flux of small near-Earth objects colliding with Earth. Nature. 420, 294—296.

50.Chernogor L. F., Rozumenko V. Т. Earth — atmosphere — geospace as an open nonlinear dynamical system. Radio Phys. Radio Astron. 13(2). 120—137 (2008).

51.Chernogor L. F. (2011) The Earth - atmosphere - geospace system: main properties and processes. Int. J. Remote Sensing. 32(11). 3199—3218.

52.Chernogor L. F., Rozumenko V. T. (2013) The physical effects associated with Chelyabinsk meteorite’s passage. Probl. Atomic Sci. and Technol. 86(4). 136 — 139.

53.Infrasound monitoring for atmospheric studies. (2010) Le Pichon A., Blanc E., Hauchecorne A. (Eds.). Springer Dordrecht Heidelberg London New York.

54.Kaznev V. Y. (1994) Observational characteristics of electrophonic bolides: Statistical analysis. Sol. Sys. Res. 28. 49—60.

55.Keay C. S. L. (1980) Anomalous sounds from the entry of meteor fireballs. Science. 210. 11—15.

56.Keay C. S. L. (1980) Audible sounds excited by aurorae and meteor fireballs. J. Roy. Astron. Soc. Canada, 74. 253—260.

57.Keay C. S. L. (1991, 1992) Meteor fireball sounds identified. Asteroids, Comets, Meteors. 297—300.

58.Keay C. S. L. (1992) Electrophonic sounds from large meteor fireballs. Meteoritics. 27. 144—148.

59.Keay C. S. L. (1994) Electrophonic Sounds Catalog. WGN Obs. Rep. Ser. Int. Meteor. Org. 6. 151—172.

60.Keay C. S. L., Ceplecha Z. (1994) Rate of observation of electrophonic meteor fireballs. J. Geophys. Res. 99. 13163—13165.

61.Lizunov G. (2001) Stressing of the magnetosphere by earthquakes. Adv. Space Res. 28(5). 823—827.

62.Pogoreltsev A. I. (1996) Production of electromagnetic field disturbances due to the interaction between acoustic gravity waves and the ionospheric plasma. J. Atmospheric and Terrestrial Phys. 58(10). 1125—1141.

63.Popel S. I. (1997) Eleciromagnetic effects in the Earth’s ionosphere and magnetosphere caused by a cosmic body. Planet. Space Sci. 45(7). 869—875.

64.Popova O. P., Jenniskens P., Emelyanenko V., et al. (2013) Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342. 1069— 1073.

65.Popova O. P., Jenniskens P., Emelyanenko V., et al. (2013) Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. Last access 1.10.2015.

66.Zalyubovsky I. I., Chernogor L. F., Rozumenko V. T. (2008) The Earth - Atmosphere - Geospace Sysiem: Main Properties, Processes and Phenomena. Space Res. in Ukraine. 2006—2008. Kyiv, 19—29.