Integrated characteristics of SDSS DR14 star-forming galaxies with extremely low oxygen abundances

1Izotova, IY, 2Izotov, YI
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(2):3-19
Start Page: Extragalactic Astronomy
Language: Ukrainian

We study the integrated characteristics of the sample of 66 star-forming galaxies with extremely low oxygen abundances from the SDSS Data Release 14. Oxygen abundances in 42 studied galaxies with detected [O III] λ 436.3 nm emission line are derived by the direct Temethod. Oxygen abundances for remaining galaxies are derived by the strong-line method. Derived abundances 12 + log(O/H) are in the range 6.97...7.52 and on average are 4 times lower compared to the value for the large comparison sample of compact star-forming galaxies from the SDSS. Stellar masses and Hβ luminosities for both samples are derived from SDSS spectra with small spectroscopic aperture (2 or 3 arcsec in diameter). For the determination of their values for the entire galaxy we introduce aperture corrections, which take into account radiation outside the spectroscopic slit. Stellar masses and luminosities in the optical range of the galaxies with extremely low metallicities are by 100 times lower than the respective values for the galaxies from the comparison sample. Galaxies with extremely low metallicities have lower oxygen abundances on the diagrams oxygen abundance — luminosity and oxygen abundance — stellar mass compared to relations for the main SDSS sample at fixed the luminosity and the stellar mass. Possible cause of this offset is an accretion of unenriched intergalactic gas, which results in reduction of the oxygen abundance in the galaxy interstellar medium. Most of the galaxies with extremely low oxygen abundances were detected in the mid-infrared range with the space telescope WISE at wavelengths 3.4 m and 4.6 m. Colour index W1 – W2, where W1 and W2 are magnitudes at wavelengths 3.4 and 4.6 m, in these galaxies corresponds to the values for emission by stars and/or free-free ionized gaz emission precluding the presence of warm and hot dust due to the low luminosity of ultraviolet radiation, which is the main source of dust heating in star-forming galaxies.

Keywords: chemical composition, dwarf star-forming galaxies, H II regions, infrared radiation, interstellar dust

1. I. Yu. Izotova and Yu. I. Izotov. Properties of star-forming galaxies in the mid-infrared range from the data obtained with the WISE space telescope, Kinematics Phys. Celestial Bodies 35, 253–260 (2019).

2. B. Abolfathi, D. S. Aguado, G. Aguilar, et al. The fourteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment, Astrophys. J. Suppl. Ser. 235, 42 (2018).

3. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, 16 (2014).

4. R. J. Bouwens, G. D. Illingworth, P. A. Oesch, et al. UV luminosity functions at redshifts z ~ 4 to z ~ 10: 10,000 galaxies from HST legacy fields, Astrophys. J. 811, 33 (2015).

5. B. Ekta and J. N. Chengalur. When are extremely metal-deficient galaxies extremely metal deficient, Mon. Not. R. Astron. Soc. 406, 1238–1247 (2010).

6. L. Girardi, A. Bressan, G. Bertelli, and C. Chiosi. Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 M☉, and from Z = 0.0004 to 0.03, Astron. Astrophys. Suppl. Ser. 141, 371–383 (2000).

7. R. L. Griffith, C.-W. Tsai, D. Stern, et al. WISE discovery of low-metallicity blue compact dwarf galaxies, Astrophys. J. 736, L22 (2011).

8. N. G. Guseva, Y. I. Izotov, K. J. Fricke, and C. Henkel. New candidates for extremely metal-poor emission-line galaxies in the SDSS/BOSS DR10, Astron. Astrophys. 579, 11 (2015).

9. N. G. Guseva, Y. I. Izotov, K. J. Fricke, and C. Henkel. Searching for metal-deficient emission-line galaxy candidates: The final sample of the SDSS DR12 galaxies, Astron. Astrophys. 599, 65 (2017).

10. A. S. Hirschauer, J. J. Salzer, E. D. Skillman, et al. ALFALFA discovery of the most metal-poor gas-rich galaxy known: AGC 198691, Astrophys. J. 822, 108 (2016).

11. Y. I. Izotov, F. H. Chaffee, C. B. Foltz, et al. Helium abundance in the most metal-deficient blue compact galaxies: I ZW 18 and SBS 0335-052, Astrophys. J. 527, 757–777 (1999).

12. Y. I. Izotov, N. G. Guseva, K. J. Fricke, and C. Henkel. Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey, Astron. Astrophys. 561, 33 (2014).

13. Y. I. Izotov, N. G. Guseva, K. J. Fricke, and P. Papaderos. SBS 0335-052E+W: Deep VLT/FORS+UVES spectroscopy of the pair of the lowest-metallicity blue compact dwarf galaxies, Astron. Astrophys. 503, 61–72 (2009).

14. Y. I. Izotov, N. G. Guseva, K. J. Fricke, and C. Henkel. Low-redshift lowest-metallicity star-forming galaxies in the SDSS DR14, Astron. Astrophys. 623, 40 (2019).

15. Y. I. Izotov, N. G. Guseva, and T. X. Thuan. Green pea galaxies and cohorts: Luminous compact emission-line galaxies in the Sloan Digital Sky Survey, Astrophys. J. 728, 161 (2011).

16. Y. I. Izotov, V. A. Lipovetsky, F. H. Chaffee, et al. SBS 0335—052, a probable nearby young dwarf galaxy: Evidence pro and con, Astrophys. J. 476, 698–711 (1997).

17. Y. I. Izotov, T. X. Thuan, and N. G. Guseva. Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5 m APO observations, Astron. Astrophys. 546, 122 (2012).

18. Y. I. Izotov, T. X. Thuan, and N. G. Guseva. J1234+3901: An extremely metal-deficient compact star-forming dwarf galaxy at redshift 0.133, Mon. Not. R. Astron. Soc. 483, 5491–5498 (2019).

19. Y. I. Izotov, T. X. Thuan, N. G. Guseva, and S. E. Liss. J0811+4730: The most metal-poor star-forming dwarf galaxy known, Mon. Not. R. Astron. Soc. 473, 1956–1966 (2018).

20. V. Khaire, R. Srianand, T. R. Choudhury, et al. The redshift evolution of escape fraction of hydrogen ionizing photons from galaxies, Mon. Not. R. Astron. Soc. 457, 4051–4062 (2016).

21. T. Lejeune, R. Buser, and F. Cuisinier. Standard stellar library for evolutionary synthesis. I. Calibration of theoretical spectra, Astron. Astrophys. Suppl. Ser. 125, 229–246 (1997).

22. J. Lequeux, M. Peimbert, J. F. Rayo, et al. Chemical composition and evolution of irregular and blue compact galaxies, Astron. Astrophys. 80, 155–166 (1979).

23. R. Maiolino and F. Mannucci. De re metallica: The cosmic chemical evolution of galaxies, Astron. Astrophys. Rev. 27, 3 (2019).

24. M. Ouchi, B. Mobasher, K. Shimasaku, et al. Large area survey for z = 7 galaxies in SDF and GOODS-N: Implications for galaxy formation and cosmic reionization, Astrophys. J. 706, 1136–1151 (2009).

25. B. E. Robertson, R. S. Ellis, S. R. Furlanetto, and J. S. Dunlop. Cosmic reionization and early star-forming galaxies: A joint analysis of new constraints from Planck and the Hubble Space Telescope, Astrophys. J. 802, L19 (2015).

26. B. E. Robertson, S. R. Furlanetto, E. Schneider, et al. New constraints on cosmic reionization from the 2012 Hubble Ultra Deep Fields, Astrophys. J. 768, 71 (2013).

27. J. H. Wise and R. Cen. Ionizing photo escape fractions from high-redshift dwarf galaxies, Astrophys. J. 693, 984–999 (2009).