Changes of plasma parameters in Earth magnetosphere tail during substorm initialization

1Kozak, LV, 1Petrenko, BA, 2Kronberg, EA, 3Grigorenko, EE, 4Kozak, PM, 1Reka, KD
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Max Planck Institute, Göttingen, Germany
3Russian Space Research Institute, Moscow, Russia
4Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(2):82-96
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian

A chain of events accompanying appearance of a substorm in Earth ionosphere and magnetosphere is considered. Features of geomagnetic pulsations and mechanism of their generation are indicated. Measurements of magnetic field fluctuations from ferro-probe magnetometers (sample rate 22.4 Hz), and also the data on temperature, velocity, and density of electrons, and different types of ions from the experiment PEACE and CIS-CODIF (sample rate 0.125...0.25 Hz) of space mission Cluster-2 have been analyzed. It was obtained that during the initiation of substorm, which was accompanied by dipolarization (sharp change of magnetic field configuration from the elongated to the tail force lines to more dipole structure) one can observe changing the plasma parameters. In particular it was registered the changes of concentration, significant increase of temperature, and increasing fluctuations of the velocity components with the increase of z-component. The time shift of heating protons and oxygen ions, and also density changing was detected. During the substorm electron density exceeds in order one of helium ions, and almost in two orders one of oxygen ions; Alfven velocity is near 470 km/s, and parameter beta characterizing the ratio of thermal pressure to magnetic one exceeds a unity. Using wavelet analysis the comparison of wave characteristics for different pressures was carried out. The pressure of magnetic field, and also dynamic and thermal pressure for different types of particles was considered. In fluctuations of the magnetic field pressure, thermal pressure of electrons and protons the Pc5 and powerful Pc4 pulsations (45...150 s), and also direct and inverse cascades was observed. At this the direct cascades point to the decay of larger structures, as a result of which one could observe the transfer from lower to higher frequencies, and on the contrary the reverse cascades are characterized by the transfer from higher to lower frequencies, and by the presence of merging (self-organization) of small structures into larger ones. The obtained results point to significant role of kinetic effects in the complex chain of processes in Earth magnetosphere in the period of explosive phase of substorm.

Keywords: Earth magnetosphere tail, Pc pulsations; magnetic, substorm, thermal and dynamic pressure in Earth magnetosphere tail; role of electrons in Earth magnetosphere

Full text (PDF)


1. S.-I. Akasofu, Polar and Magnetospheric Substorms (Springer-Verlag, Dordrecht, 1968; Mir, Moscow, 1971).

2. Space Geoheliophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vol. 1 [in Russian].

3. A. Nishida, Geomagnetic Diagnosis of the Magnetosphere (Springer-Verlag, New York, 1977; Mir, Moscow, 1980).

4. J. Birn. Magnetotail dynamics: Survey of recent progress, in The Dynamic Magnetosphere, Ed. by W. Liu and M. Fujimoto (Springer-Verlag, Dordrecht, 2011), in Ser.: IAGA Special Sopron Book Series, Vol. 3, pp. 49–63.

5. J. Birn, M. Hesse, and K. Schindler. Formation of thin current sheets in space plasmas, J. Geophys. Res.: Space Phys. 103, 6843–6852 (1998).

6. M. N. Caan, R. L. McPherron, and C. T. Russell. The statistical magnetic signatures of magnetospheric substorms, Planet. Space Sci. 26, 269–279 (1978).

7. D. H. Fairfield, T. Mukai, M. Brittnacher, et al. Earthward flow bursts in the inner magnetosphere and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity, J. Geophys. Res.: Space Phys. 104, 355–370 (1999).

8. L. A. Frank, W. R. Paterson, J. B. Sigwarth, and S. Kokubun. Observations of magnetic field dipolarization during auroral substorm onset, J. Geophys. Res.: Space Phys. 105, 15897–15912 (2000).

9. Handbook of the Solar-Terrestrial Environment, Ed. by Y. Kamide and A. Chian (Springer-Verlag, Berlin, 2007).

10. S. Jevrejeva, J. C. Moore, and A. Grinsted. Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach, J. Geophys. Res.: Atmos. 108, 4677–4708 (2003).

11. A. D. Johnstone, C. Alsop, S. Burge, P. J. Carter, A. J. Coates, A. J. Coker, et al. PEACE: A plasma electron and current experiment, Space Sci. Rev. 79, 351–398 (1997).

12. L. V. Kozak, A. T. Y. Lui, E. A. Kronberg, and A. S. Prokhorenkov. Turbulent processes in Earth’s magnetosheath by Cluster mission measurements, J. Atmos. Sol.-Terr. Phys. 154, 115–126 (2017).

13. L. V. Kozak, B. A. Petrenko, A. T. Y. Lui, E. A. Kronberg, E. E. Grigorenko, and A. S. Prokhorenkov. Turbulent processes in the Earth’s magnetotail: Spectral and statistical research, Ann. Geophys. 36, 1303–1318 (2018).

14. R. E. Lopez. Magnetospheric substorms, Johns Hopkins APL Tech. Dig. 11, 264–271 (1990).

15. A. T. Y. Lui. Extended consideration of a synthesis model for magnetospheric substorm, in Magnetospheric Substorms, Ed. by J. Kan, et al. (AGU, Washington, DC, 1991), in Ser.: Geophysical Monograph, Vol. 64, pp. 43–60.

16. A. T. Y. Lui. Current disruption in the Earth’s magnetosphere: Observations and models, J. Geophys. Res.: Space Phys. 101, 13067–13088 (1996).

17. A. T. Y. Lui. Multiscale phenomena in the near-Earth magnetosphere, J. Atmos. Sol.-Terr. Phys. 64, 125–143 (2002).

18. A. T. Y. Lui. Potential plasma instabilities for substorm expansion onsets, Space Sci. Rev. 113, 127–206 (2004).

19. R. McPherron. Substorm related changes in the geomagnetic tail: The growth phase, Planet. Space Sci. 20, 1521–1539 (1972).

20. M. I. Pudovkin, V. S. Semenov, G. V. Starkov, and T. A. Kornilova. On separation of the potential and vortex parts of the magnetotail electric field, Planet. Space Sci. 39, 563–568 (1991).

21. I. J. Rae, I. R. Mann, V. Angelopoulos, K. R. Murphy, D. K. Milling, A. Kale, H. U. Frey, G. Rostoker, C. T. Russell, C. E. J. Watt, M. J. Engebretson, M. B. Moldwin, S. B. Mende, H. J. Singer, and E. F. Donovan. Near-Earth initiation of a terrestrial substorm, J. Geophys. Res.: Space Phys. 114, 2156–2202 (2009).

22. H. Reme, C. Aoustin, J. M. Bosqued, I. Dandouras, B. Lavraud, J. A. Sauvaud, et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical cluster ion spectrometry (CIS) experiment, Ann. Geophys. 19, 1303–1354 (2001).

23. J. C. Samson, B. G. Harrold, J. M. Ruohoniemi, R. A. Greenwald, and A. D. M. Walker. Field line resonances associated with MHD waveguides in the magnetosphere, Geophys. Res. Lett. 19, 441–456 (1992).

24. T. Sarris and X. Li. Evolution of the dispersionless injection boundary associated with substorms, Ann. Geophys. 23, 877–884 (2005).

25. V. A. Sergeev, D. G. Mitchell, C. T. Russell, and D. J. Williams. Structure of the tail plasma/current sheet at ∼11 RE and its changes in the course of a substorm, J. Geophys. Res.: Space Phys. 98, 17345–17365 (1993).

26. M. A. Shukhtina, N. P. Dmitrieva, N. G. Popova, et al. Observational evidence of the loading-unloading substorm scheme, Geophys. Res. Lett. 32, L17107 (2005).

27. C. Torrence and G. P. Compo. A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. 79, 61–78 (1998).;2

28. A. G. Yahnin, I. V. Despirak, A. A. Lubchich, et al. Indirect mapping of the source of the oppositely directed fast plasma flows in the plasma sheet onto the auroral display, Ann. Geophys. 24, 679–687 (2006).

29. R. Yamaguchi, H. Kawano, S. Ohtani, et al. Total pressure variations in the magnetotail as a function of the position and the substorm magnitude, J. Geophys. Res.: Space Phys. 109, A03206 (2004).