The second reprocessing campaigns of historical observations in the GNSS data analysis centre of MAO NAS OF Ukraine

1Khoda, OO
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(5):64-81
Start Page: Earth's Rotation and Geodynamics
Language: Ukrainian

The second reprocessing campaign of historical observations of GNSS satellites at permanent stations located in Ukraine and in the Eastern Europe for GPS weeks 935—1708 (December 7, 1997 — October 6, 2012) was carried out in the GNSS Data Analysis Centre of the Main Astronomical Observatory NAS of Ukraine with using products updated in IGS repro2 and EPN-Repro2 campaigns — precise ephemerides of GPS and GLONASS satellites, coordinates and velocities of reference permanent GNSS stations, etc. The observations was analyzed with the Bernese GNSS Software ver. 5.2 software according to the requirements of the EUREF Permanent GNSS Network (EPN), that were valid at that time. In total, observations on 72 GNSS stations, including 48 Ukrainian stations belonging to the following operators of GNSS networks: MAO NAS of Ukraine, Research Institute of Geodesy and Cartography, TNT TPI company (TNT TPI GNSS Network), PJSC System Solutions (System.NET), Lviv Polytechnic National University, UNAVCO, Inc. (USA), were processed. The IGb08 reference frame was realized by applying No-Net-Translation conditions on the coordinates of the IGS Reference Frame stations. As result, the stations’ coordinates in the IGb08 reference frame and the zenith tropospheric delays for all stations were estimated. The mean repeatabilities for components of stations’ coordinates for all weeks (the characteristics of the precision of the received daily and weekly solutions) are in the following ranges: for north and east components — from 0.6 mm to 1.6 mm (average values are 1.02 mm and 0.94 mm respectively), for height component — from 2.2 mm to 5.2 mm (average value is 3.36 mm) with the outlier of 5.79 mm for GPS week 943. The coordinates of the permanent GNSS stations for one weekly solution are presented.

Keywords: GNSS, IGb08 Reference Frame, permanent stations, reprocessing

1. M. V. Ishchenko. The GNSS data analysis centre of the Main Astronomical Observatory of the NAS of Ukraine: Some results of observation reprocessing of GPS observations at permanent stations of the regional network for GPS weeks 1236–1399, Kosm. Nauka Tekhnol. 18 (6), 76–80 (2012).

2. O. A. Khoda. GPS data analysis center of the main astronomical observatory: Results of observation processing for GPS weeks 1236–1399, Kinematics Phys. Celestial Bodies 26, 313–321 (2010).

3. O. A. Khoda. Measurement of coordinates of Ukrainian permanent GPS stations from observation data for GPS weeks 1236–1399, Kinematics Phys. Celestial Bodies 27, 17–29 (2011).

4. O. A. Khoda. Determination of zenith tropospheric path delay for the Ukrainian permanent GPS stations using observation data for GPS weeks 1236–1399, Kinematics Phys. Celestial Bodies 27, 59–61 (2011).

5. O. A. Khoda. GNSS data analysis centre of the Main Astronomical Observatory NAS of Ukraine: Results of observations processing for GPS weeks 1400–1631, Kosm. Nauka Tekhnol. 21 (2), 56–64 (2015).

6. O. A. Khoda. Estimation of coordinates of the Eastern European permanent GNSS stations using observation data for GPS weeks 1632–1708, Kosm. Nauka Tekhnol. 21 (4), 56–65 (2015).

7. O. O. Khoda. Permanent GPS station Golosiiv (GLSV): 1998 observations, Kosm. Nauka Tekhnol. 5 (4), 75–78 (1999).

8. O. O. Khoda. Determination of coordinates of the new permanent GPS station UZHL (Uzhgorod), Kinematics Phys. Celestial Bodies 15, 355–358 (1999).

9. O. O. Khoda. Ukrainian permanent GPS network: Creation and operation, Kosm. Nauka Tekhnol. 7 (4), 83–86 (2001).

10. O. O. Khoda. Estimation of coordinates of the Eastern European permanent GNSS stations in the IGb08 reference frame for GPS weeks 1709–1933, Kinematics Phys. Celestial Bodies 35, 46–53 (2019).

11. Bernese GNSS Software Version 5.2., Ed. by R. Dach, S. Lutz, P. Walser, and P. Fridez (Astron. Inst., Univ. of Berne, Berne, 2015).

12. Antenna Calibrations (National Geodetic Survey, 2017).

13. J. Böhm, A. Niell, P. Tregoning, and H. Schuh. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett. 33, L07304 (2006).

14. M. S. Bos and H. G. Scherneck, Ocean Tide Loading Provider (Onsala Space Observatory, 2018).

15. C. Bruyninx, J. Legrand, A. Fabian, and E. Pottiaux. GNSS metadata and data validation in the EUREF Permanent Network, GPS Solutions 23, 106 (2019).

16. J. M. Dow, R. E. Neilan, and C. Rizos. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geod. 83, 191–198 (2009).

17. J. Griffiths. Combined orbits and clocks from IGS second reprocessing, J. Geod. 93, 177–195 (2019).

18. Guidelines for the EPN Analysis Centres (2018). centres.pdf.

19. S. Hilla, The Extended Standard Product 3 Orbit Format (SP3-c). (National Geodetic Survey, 2010). ftp://igs. org/pub/data/format/sp3c.txt.

20. IERS Conventions (2010), Ed. by G. Petit and B. Luzum, IERS Technical Note No. 36 (IERS, Frankfurt am Main, 2010).

21. A. Kenyeres, J. G. Bellet, C. Bruyninx, A. Caporali, F. de Doncker, B. Droscak, A. Duret, P. Franke, I. Georgiev, R. Bingley, L. Huisman, L. Jivall, O. Khoda, K. Kollo, A. I. Kurt, S. Lahtinen, J. Legrand, B. Magyar, D. Mesmaker, K. Morozova, J. Nágl, S. Özdemir, X. Papanikolaou, E. Parseliunas, G. Stangl, M. Ryczywolski, O. B. Tangen, M. Valdes, J. Zurutuza, and M. Weber. Regional integration of long-term national dense GNSS network solutions, GPS Solutions 23, 122 (2019).

22. J. Kouba and Y. Mireault, New IGS ERP Format (Version 2), IGSMAIL–1943 (1998). pipermail/igsmail/1998/003315.html.

23. T. Letellier, Etude des Ondes de Marée sur les Plateaux Continentaux, Doctoral Thesis (Univ. of Toulouse, Toulouse, 2004).

24. N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res.: Solid Earth 117, B04406 (2012).

25. R. D. Ray and R. M. Ponte. Barometric tides from ECMWF operational analyses, Ann. Geophys. 21, 1897–1910 (2003).

26. R. D. Ray, D. J. Steinberg, B. F. Chao, and D. E. Cartwright. Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides, Science 264, 830–832 (1994).

27. P. Rebischung, IGb08: An Update on IGS08, IGSMAIL–6663 (2012). 2012/000497.html.

28. M. Rothacher and R. Schmid, ANTEX: The Antenna Exchange Format, Version 1.4 (TU München, 2010).

29. R. Schmid, Igs08_1707.atx: Update including JPSREGANT subtype calibrations & R743, IGSMAIL–6662 (2012).

30. R. Schmid, R. Dach, X. Collilieux, A. Jäggi, M. Schmitz, and F. Dilssner. Absolute IGS antenna phase center model igs08.atx: Status and potential improvements, J. Geod. 90, 343–364 (2016).

31. IERS Working Group on SINEX Format, SINEX — Solution (Software/technique) INdependent EXchange Format Version 2.01 (2005). sinex_v201_pdf.pdf?__blob=publicationFile&v=2.

32. SINEX_TRO — Solution (Software/technique) INdependent EXchange Format for combination of TROpospheric estimates Version 0.01 (1997).

33. E. M. Standish, JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Propulsion Laboratory Interoffice Memorandum IOM 312.F-98-048 (Jet Propulsion Laboratory, 1998). ioms/de405.iom.pdf.

34. C. Völksen. EPN reprocessing activities: A summary, Presented at the EUREF Analysis Centres Workshop, Brussels, Belgium, Oct. 25–26, 2017. 04_EPN_Reprocessing/voelksen_repro-2017.pdf.