X-ray galaxy catalog Xgal

Zadorozhna, LV, Tugay, AV, Shevchenko, SY, Pulatova, NG
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(3):68-83
https://doi.org/10.15407/kfnt2021.03.068
Start Page: Extragalactic Astronomy
Language: Ukrainian
Abstract: 

The study of extragalactic X-ray sources using the data from the XMM-Newton space observatory is one of the main directions of modern X-ray astronomy. The observations have shown that X-rays from galaxies are mainly the radiations of the central region — the active galactic nucleus and the set of X-ray sources in the galaxy’s disk. In our work, a cross-correlation was made between the 4XMM-DR9 catalog and the HyperLeda galaxy database. The 4XMM-DR9 catalog is modern, large catalog of observations containing 550124 unique sources covering 2.85% of the sky, and HyperLeda contains about 1.5 million galaxies. As a result, we obtained a sample of more than 5000 X-ray galaxies, most of which are low-luminoslty active galactic nuclei. Based on this sample, galaxies with an X-ray flux greater than F = 10-20 J×cm-2s-1 were selected. Because it is easier to construct an informative spectrum for such sources, they are of particular interest. An identified and classified catalog of 1172 manually verified galaxies, the X-ray Galaxy Catalog Xgal, was created. Most galaxies in Xgal have an active X-ray nucleus, Seyfert galaxies predominate at short distances and quasars predomtnate at large distances. 169 galaxtes have an extended nucleus with a visible surface brightness distribution, 173 galaxies have been detected with more than one X-ray source. Based on Xgal, it was created a catalog of elongated X-ray galaxies (which optical angular sizes are in the range exceed a > 60”) having X-ray sources outside the nucleus. Both catalogs are freely available. In the future, it is possible to use the Xgal catalog to construct the spectra of a certain class of objects in different ranges and to develop or improve the theory of their radiation, survey bright and extended quasars, and use the entire cross-sample to study low-luminostty active gatactic nuclei, large-scale structure of the universe in the X-ray range.

Keywords: 4XMM-DR9, active galactic nuclei, extragalactic discrete X-ray sources, HyperLeda, quasars, X-rays from galaxies, «XMM-Newton»
References: 

1. L. V. Zadorozhna, A. V. Tugay, and S. Yu. Shevchenko. Extragalactic X-ray discrete sources, Visn. Astron. Shk. 16 (1), 1–7 (2020).
https://doi.org/10.18372/2411-6602.16.01

2. A. V. Zasov and K. A. Postnov, General Astrophysics, 2nd ed. (Vek 2, Fryazino, 2011) [in Russian].

3. M. S. Longair, High Energy Astrophysics (Cambridge Univ. Press, Cambridge, 2011; Mir, Moscow, 1984).
https://doi.org/10.1017/CBO9780511778346

4. R. J. Assef, D. Stern, G. Noirot, et al. The WISE AGN Catalog, Astrophys. J., Suppl. Ser. 234, 1–22 (2018).
https://doi.org/10.3847/1538-4365/aaa00a

5. A. Caccianiga, P. Severgnini, R. Della Ceca, et al. Elusive AGN in the XMM-Newton bright serendipitous survey, Astron. Astrophys. 470, 557–570 (2007).
https://doi.org/10.1051/0004-6361:20077732

6. J. Ebrero, F. J. Carrera, M. J. Page, et al. The XMM-Newton serendipitous survey. VI. The X-ray luminosity function, Astron. Astrophys. 493, 55–69 (2009).
https://doi.org/10.1051/0004-6361:200810919

7. A. Elyiv, N. Clerc, M. Plionis, et al. Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field, Astron. Astrophys. 537, 131–145.
https://doi.org/10.1051/0004-6361/201117983

8. G. Fabbiano. X-rays from galaxies, in The Chandra X-ray Observatory. Exploring the High Energy Universe (Smithsonian Inst. and IOP, Bristol, 2019), Ch. 7, pp. 7-1–7-42.
https://doi.org/10.1088/2514-3433/ab43dcch7

9. C. Gabriel, M. Denby, D. J. Fyfe, et al., Astronomical Data Analysis Software and Systems (ADASS) XIII (Astronomical Society of the Pacific, San Francisco, Cal., 2004), in Ser.: ASP Conference Series, Vol. 314.

10. D. Lena, G. Panizo-Espinar, P. G. Jonker, et al. Characterisation of a candidate dual AGN, Mon. Not. R. Astron. Soc. 478, 1326–1340 (2018).
https://doi.org/10.1093/mnras/sty1147

11. M. S. Longair, Galaxy Formation (Springer-Verlag, Berlin, 2008).

12. E. Lusso and G. Risaliti. The physical relation between disc and coronal emission in quasars, Frontiers Astron. Space Sci. 4, 66 (2017).
https://doi.org/10.3389/fspas.2017.00066

13. K. Migkas, G. Schellenberger, T. H. Reiprich, et al. Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX–T scaling relation, Astron. Astrophys. 636, A15 (2020).
https://doi.org/10.1051/0004-6361/201936602

14. B. Mingo, M. G. Watson, S. R. Rosen, et al. The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS, Mon. Not. R. Astron. Soc. 462, 2631–2667 (2016).
https://doi.org/10.1093/mnras/stw1826

15. L. Strüder, U. Briel, K. Dennerl, et al. The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera, Astron. Astrophys. 365, L18–L26 (2001).
https://doi.org/10.1051/0004-6361:20000066

16. The XMM-Newton ABC Guide: An Introduction to XMM-Newton Data Analysis Version 6.0 for XMM-SAS v 18.0 (2019). https://heasarc.gsfc.nasa.gov/docs/xmm/abc/.

17. I. Traulsen, A. D. Schwope, G. Lamer, et al. The XMM-Newton serendipitous survey. X: The second source catalogue from overlapping XMM-Newton observations and its long-term variable content (2020). https://arxiv.org/abs/2007.02932.
https://doi.org/10.1051/0004-6361/201833938

18. A. Tugay. Bright X-ray galaxies in SDSS filaments, Adv. Astron. Space Phys. 3, 116–121 (2013).

19. A. V. Tugay and S. Yu. Shevchenko. Infrared counterparts of X-ray galaxies, Odessa Astron. Publ. 32, 42–45 (2019).
https://doi.org/10.18524/1810-4215.2019.32.182531

20. A. Tugay. Signatures of large-scale structure of Universe in X-rays, Odessa Astron. Publ. 25, 1–3 (2013).

21. M. J. L. Turner, A. Abbey, M. Arnaud, et al. The European photon imaging camera on XMM-Newton: The MOS cameras, Astron. Astrophys. 365, L27–L35 (2001).

22. M. P. Veron-Cetty and P. Veron. A catalogue of quasars and active nuclei: 13th edition, Astron. Astrophys. 518, A10 (2010).
https://doi.org/10.1051/0004-6361/201014188

23. M. G. Watson, J.-L. Augueres, J. Ballet, et al. The XMM-Newton serendipitous survey — I. The role of XMM-Newton Survey Science Centre, Astron. Astrophys. 365, L51–L59 (2001).

24. M. G. Watson, A. C. Schroder, D. Fyfe, et al. The XMM-Newton serendipitous survey. V. The second XMM-Newton serendipitous source catalogue, Astron. Astrophys. 493, 339–373 (2009).
https://doi.org/10.1051/0004-6361:200810534

25. N. A. Webb, M. Coriat, I. Traulsen, et al. The XMM-Newton serendipitous survey. IX. The fourth XMM-Newton serendipitous source catalogue, Astron. Astrophys. 641, A136 (2020).
https://doi.org/10.1051/0004-6361/201937353

26. XMM-Newton Users Handbook Issue 2.17 (2019). https://xmmtools.cosmos.esa.int/external/xmm_user_support/ documentation/uhb/.

27. M. Zhou and M. Gu. The composite X-ray spectra of radio-loud and radio-quiet SDSS quasars, (2020). https://arxiv.org/abs/2007.01049.