Altitudinal dependence of aerosol volumetric scattering coefficient in the Saturn’s atmosphere. II. The northern hemisphere latitudinal belts

Ovsak, OS, 1Karimov, AM, 1Lysenko, PG
1Fesenkov Astrophysical Institute, Almaty, Kazakhstan
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(4):18-34
https://doi.org/10.15407/kfnt2021.04.018
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

The altitude dependences of volumetric aerosol scattering coefficient have been determined for the five latitudinal belts of the Saturn Northern Hemisphere. A probable vertical structure of the aerosol component in the range of atmospheric pressure 0.06...10 bar has been constructed. For this purpose, we have used the our previous work analyzing results of 2015 spectrophotometric measurements data of giant planet latitudinal belts 17N, 33N, 49N, 66N and 80N in the absorption bands of methane at 727 nm and 619 nm. In the studied range of altitude levels of Saturn’s atmosphere, the ubiquitous presence of aerosols was found, without signs of the presence of purely gas interlayers there. The largest values of the volumetric aerosol scattering coefficient 2⋅10-6 cm-1 are determined in the midlatitude belt 49N, and the smallest 10-8 cm-1 in the circumpolar belt 80N. In the studied altitude range of the atmosphere, four areas of aerosol thickening were identified, within which the volumetric aerosol scattering coefficient reaches its maximum values. The presence of particles of the most powerful aerosol layer in the atmosphere of Saturn was found at altitude with a pressure of 0.06 bar. With immersion in the atmosphere depth, the scattering coefficient of this layer increases to maximum values. In all the studied latitudinal belts, except for 80N, two highest clusters are formed, in which the maxima of the volumetric scattering coefficient of atmospheric aerosol are located near altitudinal levels with averaged pressures of 0.26 bar and 0.45 bar. These thickenings are separated in height by an interlayer of less dense aerosol. When immersed in the atmosphere, the aerosol volumetric scattering coefficient is reduced significantly in the 0.45...2 bar pressure range. The third in order of magnitude aerosol thickening was found in this altitude region of the atmosphere in all latitudinal belts, except 80N. The maxima of the volumetric aerosol scattering coefficient are located here near the level with a pressure of1 bar. Even deeper we revealed in the range of atmospheric pressure 2...6 bar the fourth in order of magnitude stretched in height aerosol thickening. It consists of an upper and a lower part, with maxima of the volumetric scattering coefficient of aerosol located near the levels of 2.7 bar and 4.4 bar, respectively. The model parameters of aerosol particles were used in the calculations are: an effective radius of 1.4 Mm and a dispersion of 0.07 for the modified gamma particle size distribution function, as well as the real part of the complex refractive index of1.44. These model characteristics of aerosols are probably close to the averaged parameters of real particles in the studied altitude part of the Saturnian atmosphere in the 66N latitudinal belt, as well as for the pressure range of 0.06...1.5 bar atmosphere in the 33N belt. At the same time, signs of a possible significant difference between the model and real parameters of aerosol particles at all studied altitude levels of the atmosphere in the 17N and 49N belts of the giant planet were revealed.

Keywords: aerosol, atmosphere, latitudinal belts, Saturn, vertical structure
References: 

1. D. H. Atkinson, O. Mousis, T. R. Spilker, E. Venkatapathy, J. Poncy, A. Coustenis, and K. R. Reh. Hera — An ESA M-class Saturn entry probe mission proposal, in Proc. AGU Fall Meeting, San Francisco, Cal., Dec. 14–18, 2015 (American Geophysical Union, Washington, DC, 2015), paper id. P11B-2086.

2. S. K. Atreya and P. N. Romani. Photochemistry and clusters of Jupiter, Saturn, and Uranus, in Recent Advances in Planetary Meteorology, Ed. by G. E. Hunt (Cambridge Univ. Press, Cambridge, 1985), pp. 17–68.

3. S. K. Atreya, M. H. Wonga, T. C. Owen, P. R. Mahaffy, H. B. Niemann, I. de Pater, P. Drossart, and T. Encrenaz. A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cluster structure, vertical mixing, and origin, Planet. Space Sci. 47, 1243–1262 (1999).
https://doi.org/10.1016/S0032-0633(99)00047-1

4. O. I. Bugaenko and A. V. Morozhenko. Physical characteristics of the upper layers of Saturn’s atmosphere, Adv. Space Res. 1, 183–186 (1981).
https://doi.org/10.1016/0273-1177(81)90500-7

5. N. J. Chanover, G. L. Bjoraker, D. A. Glenar, T. Hewagama, and K. H. Baines. Latitudinal variations of Saturn’s near-infrared spectrum, in Proc. AGU Fall Meeting, San Francisco, Cal., Dec. 5–9, 2005 (American Geophysical Union, Washington, DC, 2005), paper id. P11C-0135.

6. R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel. The composition of Saturn’s atmosphere at Northern temperate latitudes from Voyager IRIS spectra: NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H ratio, Astrophys. J. 287, 899–916 (1984).
https://doi.org/10.1086/162748

7. J. M. Dlugach, A. V. Morozhenko, A. P. Vid’machenko, and E. G. Yanovitskij. Investigations of the optical properties of Saturn’s atmosphere carried out at the Main Astronomical Observatory of the Ukrainian Academy of Sciences, Icarus 54, 319–336 (1983).
https://doi.org/10.1016/0019-1035(83)90201-4

8. L. N. Fletcher, L. Sromovsky, V. Hue, J. I. Moses, S. Guerlet, R. A. West, and T. Koskien. Saturn’s seasonal atmosphere at northern summer solstice (2020). arXiv 2012.09288v1 [astro-ph.EP]

9. L. N. Fletcher, S. Guerlet, G. S. Orton, R. G. Cosentino, T. Fouchet, P. G. J. Irwin, L. Li, F. M. Flasar, N. Gorius, and R. Morales-Juberías. Disruption of Saturn’s quasi-periodic equatorial oscillation by the great northern storm, Nature Astron. 1, 765–770 (2017).
https://doi.org/10.1038/s41550-017-0271-5

10. E. Karkoschka and M. Tomasko. Saturn’s vertical and latitudinal cluster structure 1991–2004 from HST imaging in 30 filters, Icarus 179, 195–221 (2005).
https://doi.org/10.1016/j.icarus.2005.05.016

11. E. Karkoschka. Spectrophotometry of the Jovian planets and Titan at 300- to 1000-nm wavelength: The methane spectrum, Icarus 111, 967–982 (1994).
https://doi.org/10.1006/icar.1994.1139

12. Yu. Kuznyetsova, O. Matsiaka, Ya. Shliakhetskaya, V. Krushevska, A. Vid’machenko, M. Andreev, and A. Sergeev. Spectral researches of solar system giant planets using 2-m telescope at the Peak Terskol, Contrib. Astron. Obs. Skalnate’ Pleso 43, 461–461 (2014).

13. G. F. Lindal. The atmosphere of Neptune: An analysis of radio occultation data with Voyager 2, Astron. J. 103, 967–982 (1992).
https://doi.org/10.1086/116119

14. I. Mendikoa, A. Sánchez-Lavega, S. Pérez-Hoyos, R. Hueso, J. F. Rojas, and J. López-Santiago. Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to 1.7 μm with PlanetCam-UPV/EHU, Astron. Astrophys. 607, A72 (2017).
https://doi.org/10.1051/0004-6361/201731109

15. I. Mendikoa, S. Pérez-Hoyos, and A. Sánchez-Lavega. Probing clusters in planets with a simple Radiative Transfer model: The Jupiter case, Eur. J. Phys. 33, 1611–1624 (2012).
https://doi.org/10.1088/0143-0807/33/6/1611

16. A. V. Morozhenko. Jovian cloud stratification, Sov. Astron. Lett. 10, 323–325 (1984).

17. A. S. Ovsak. On determining the vertical structure of the aerosol component in the atmosphere of Saturn, Kinematics Phys. Celestial Bodies 34, 37–51 (2018).
https://doi.org/10.3103/S088459131801004X

18. A. S. Ovsak. The altitudinal dependence of aerosol volume scattering coefficient in the atmosphere of Saturn in 1993, in Proc. 49th Lunar and Planetary Science Conf., Woodlands, Tex., Mar. 19–23, 2018 (Lunar and Planetary Inst., 2018), paper no. 1069.

19. A. S. Ovsak, A. M. Karimov, and P. G. Lysenko. Aerosol component of the atmosphere of Saturn: Comparison of the vertical structure characteristics in latitudinal belts, Kinematics Phys. Celestial Bodies 34, 88–97 (2018).
https://doi.org/10.3103/S088459131802006X

20. O. Ovsak and N. Kostogryz. The method of computer analysis a vertical structure of aerosol component in the atmospheres of the Giant planets, in Proc. AGU Chapman Conf.: Crossing Boundaries in Planetary Atmospheres — From Earth to Exoplanets, Annapolis, Md., June 24–27, 2013 (American Geophysical Union, 2013), paper no. 1677256.

21. S. Pérez-Hoyos, J. F. Sanz-Requena, A. Sánchez-Lavega, P. G. J. Irwin, and A. Smith. Saturn’s tropospheric particles phase function and spatial distribution from Cassini ISS 2010–11 observations, Icarus 277, 1–18 (2016).
https://doi.org/10.1016/j.icarus.2016.04.022

22. S. Pérez-Hoyos, A. Sánchez-Lavega, and R. G. French. Short-term changes in the belt/zone structure of Saturn’s southern hemisphere (1996–2004), Astron. Astrophys. 460, 641–645 (2006).
https://doi.org/10.1051/0004-6361:20065972

23. T. Roman Michael, D. Banfield, and P. J. Gierasch. Saturn’s cluster structure inferred from Cassini ISS, Icarus 225, 93–110 (2013).
https://doi.org/10.1016/j.icarus.2013.03.015

24. A. Sánchez-Lavega, R. Hueso, and S. Pérez-Hoyos. The three-dimensional structure of Saturn’s equatorial jet at cluster level, Icarus 187, 510–519 (2007).
https://doi.org/10.1016/j.icarus.2006.10.022

25. R. Santer and A. Dollfus. Optical reflectance polarimetry of Saturn’s globe and rings: IV. Aerosols in the upper atmosphere of Saturn, Icarus 48, 496–518 (1981).
https://doi.org/10.1016/0019-1035(81)90060-9

26. J. F. Sanz-Requena, S. Pérez-Hoyos, A. Sánchez-Lavega, A. Antuñano, and P. G. J. Irwin. Haze and cluster structure of Saturn’s North Pole and Hexagon Wave from Cassini/ISS imaging, Icarus 305, 284–300 (2018).
https://doi.org/10.1016/j.icarus.2017.12.043

27. L. A. Sromovsky, K. H. Baines, and P. M. Fry. Modeling the evolution of north polar color and cluster structure on Saturn, in Proc. 52nd AAS Division of Planetary Science Meeting, Oct. 26–30, 2020; Bull. Am. Astron. Soc. 52 (6), 204.03 (2020).

28. V. G. Tejfel, L. A. Usoltzeva, and G. A. Kharitonova. The spectral characteristics and probable structure of the cluster layer of Saturn, in Planetary Atmospheres: Proc. 40th IAU Symp., Marfa, Tex., Oct. 26–31, 1969, Ed. by C. Sagan, T. C. Owen, and H. J. Smith (Reidel, Dordrecht, 1969), p. 375.

29. T. Temma, N. J. Chanover, A. A. Simon-Miller, D. A. Glenar, J. J. Hillman, and D. M. Kuehn. Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging, Icarus 175, 464–489 (2005).
https://doi.org/10.1016/j.icarus.2004.11.006

30. A. P. Vidmachenko. Seasons on Saturn. 1. Changes in reflecting characteristics of the atmosphere at 1964–2012, Visn. Astron. Shk. 11, 1–14 (2015).
https://doi.org/10.18372/2411-6602.11.1001

31. A. P. Vidmachenko. Seasons on Saturn. II. Influence of solar activity on variation of methane absorption, Visn. Astron. Shk. 11, 15–23 (2015).
https://doi.org/10.18372/2411-6602.11.1015

32. A. P. Vid’machenko. Seasonal changes of methane absorption in the Saturn atmosphere, in Proc. 46th Lunar and Planetary Science Conf., Woodlands, Tex., Mar. 16–20, 2015 (Lunar and Planetary Inst., 2015), paper no. 1051.

33. A. P. Vidmachenko, Zh. M. Dlugach, and A. V. Morozhenko. Nature of the optical nonuniformity in Saturn’s disk, Sol. Syst. Res. 17, 164–171 (1984).

34. M. B. Vincent, J. T. Clarke, and J. T. Trauger. The correlation of zonal bands and zonal winds in HST/STIS images of Jupiter and Saturn, in Proc. American Astronomical Society 32th DPS Meeting, Pasadena, Cal., Oct. 23–27, 2000; Bull. Am. Astron. Soc. 32, 1008 (2000).

35. E. G. Yanovitskij and A. S. Ovsak. Effective optical depth of absorption line formation in semi-infinite planetary atmospheres, Kinematics Phys. Celestial Bodies 13, 1–19 (1997).