Statistical characteristics of geomagnetic storms in the 24th cycle of solar activity

1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(4):49-59
https://doi.org/10.15407/kfnt2021.04.049
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

Currently, the problem of geospace storms and their components, geomagnetic storms, is one of the most important problems in solar-terrestrial physics and space geophysics. The exploration and usage of geospace for civilization needs have led our civilization to being increasingly dependent on the manifestations of solar-terrestrial processes and on the states of both atmospheric-space weather and terrestrial-space systems, which are used for various purposes. The more technologically advanced our civilization becomes, the more it becomes vulnerable to the processes taktng place on the Sun, to the mantfestations of solar-terrestrial connections, and to variations in atmospheric-space weather. These circumstances determine the relevance, and the imperishable scientific and practical significance, of studies of the manifestations of solar-terrestrial processes and their consequences. Geospace (geomagnetic) storms are accompanied by a myriad of possibilities: the deceleration of spacecraft; variations in the parameters of the atmosphere and geospace; the impact of increased cosmic radiation on crew and electronic equipment in spacecraft and high altitude aircraft; disturbances in the conditions for the propagation of radio waves and in radio channels for radar, remote sensing, radio navigation, radio communication, radio direction finding, and for radio astronomy; the induction of currents in pipelines, long electrical cables, automated railway systems, and in electrical power transmission lines; and by the impact on weather- and climate-forming systems. In addition to the physical effects of individual geomagnetic storms, which are described in a large number of scientific papers, a statistical analysis of the solar wind and interplanetary magnetic field parameters, and of geomagnetic storms over long periods, are of interest. The purpose of this work is to statistically analyze the parameters of the solar wind disturbed by solar storms, the interplanetary magnetic field, and the geomagnetic activity indices over the period of Solar Cycle 24 (2009—2020). The main statistical characteristics of the disturbed solar wind parameters responsible for the geomagnetic storm origins (153 storms in all) over Solar Cycle 24 have been estimated. The main statistical characteristics of the components of the disturbed interplanetary magnetic field have been estimated, and the main statistical characteristics of the geomagnetic field indices have been obtained. With respect to magnetic activity, Solar Cycle 24 was quieter than Solar Cycle 23.

Keywords: geomagnetic activity index, geomagnetic storm, histogram, interplanetary magnetic field, solar activity cycle, solar wind, storm statistics
References: 

1. D. V. Blagoveshchenskii. Effect of geomagnetic storms (substorms) on the ionosphere: 1. A review, Geomagn. Aeron. (Engl. Transl.) 53, 275–290 (2013).
https://doi.org/10.1134/S0016793213030031

2. A. D. Danilov. F2-region response to geomagnetic disturbances (review), Geliogeofiz. Issled., No. 5, 1–33 (2013).

3. A. D. Danilov and L. D. Morozova. Ionospheric storms in the F2 region. Morphology and physics (review), Geomagn. Aeron. 25, 705–721 (1985).

4. L. F. Chernogor and I. F. Domnin, Physics of Geospace Storms (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2014) [in Russian].

5. L. F. Chernogor. Physics of geospace storms, Kosm. Nauka Tekhnol. 27 (1), 3–77 (2021).
https://doi.org/10.15407/knit2021.01.003

6. E. Appleton and L. Ingram. Magnetic storms and upper atmospheric ionization, Nature 136, 548–549 (1935).
https://doi.org/10.1038/136548b0

7. E. Blanch, D. Altadill, J. Boška, D. Burešová, and M. Hernández-Pajares. November 2003 event: Effects on the Earth’s ionosphere observed from ground-based ionosonde and GPS data, Ann. Geophys. 23, 3027–3034 (2005).
https://doi.org/10.5194/angeo-23-3027-2005

8. C. Borries, J. Berdermann, N. Jakowski, and V. Wilken. Ionospheric storms — A challenge for empirical forecast of the total electron content, J. Geophys. Res.: Space Phys. 120, 3175–3186 (2018). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA020988.
https://doi.org/10.1002/2015JA020988

9. M. Buonsanto. Ionospheric storms — A review, Space Sci. Rev. 88, 563–601 (1999).
https://doi.org/10.1023/A:1005107532631

10. A. D. Danilov and J. Lastovička. Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron. 2, 209–224 (2001).

11. T. J. Fuller-Rowell, M. V. Codrescu, R. G. Roble, and A. D. Richmond. How does the thermosphere and ionosphere react to a geomagnetic storm?, in Magnetic Storms, Ed. by B. T. Tsurutani, W. D. Gonzalez, Y. Kamide, and J. K. Arballo (American Geophysical Union, Washington, DC, 1997), in Ser.: Geophysical Monograph, Vol. 98, pp. 203–226.
https://doi.org/10.1029/GM098p0203

12. J. M. Goodman, Space Weather & Telecommunications (Springer-Verlag, New York, 2005).

13. J. Liu, W. Wang, A. Burns, X. Yue, S. Zhang, Y. Zhang, and C. Huang. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm, J. Geophys. Res.: Space Phys. 121, 727–744 (2016).
https://doi.org/10.1002/2015JA021832

14. L. R. Lyons, Y. Nishimura, S.-R. Zhang, A. J. Coster, A. Bhatt, E. Kendall, and Y. Deng. Identification of auroral zone activity driving large-scale traveling ionospheric disturbances, J. Geophys. Res.: Space Phys. 124, 700–714 (2019).
https://doi.org/10.1029/2018JA025980

15. S. Matsushita. A study of the morphology of ionospheric storms, J. Geophys. Res. 64, 305–321 (1959).
https://doi.org/10.1029/JZ064i003p00305

16. M. Mendillo. Storms in the ionosphere: Patterns and processes for total electron content, Rev. Geophys. 44, RG4001 (2006).
https://doi.org/10.1029/2005RG000193

17. Z. Mosna, D. Kouba, P. K. Knizova, D. Buresova, J. Chum, T. Sindelarova, J. Urbar, J. Boska, and D. Saxonbergova–Jankovicova. Ionospheric storm of September 2017 observed at ionospheric station Pruhonice, the Czech Republic, Adv. Space Res. 65, 115–128 (2020).
https://doi.org/10.1016/j.asr.2019.09.024

18. O. M. Pirog, N. M. Polekh, G. A. Zherebtsov, V. F. Smirnov, J. Shi, and X. Wang. Seasonal variations of the ionospheric effects of geomagnetic storms at different latitudes of East Asia, Adv. Space Res. 37, 1075–1080 (2006).
https://doi.org/10.1016/j.asr.2006.02.007

19. N. Polekh, N. Zolotukhina, V. Kurkin, G. Zherebtsov, J. Shi, G. Wang, and Z. Wang. Dynamics of ionospheric disturbances during the 17–19 March 2015 geomagnetic storm over East Asia, Adv. Space Res. 60, 2464–2476 (2017).
https://doi.org/10.1016/j.asr.2017.09.030

20. G. W. Prölss, Ionospheric F-region storms “Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, Ed. by H. Volland (CRC, Boca Raton, Fla., 1995), Vol. 2, pp. 195–248.

21. B. G. Shpynev, N. A. Zolotukhina, N. M. Polekh, K. G. Ratovsky, M. A. Chernigovskaya, A. Yu. Belinskaya, A. E. Stepanov, V. V. Bychkov, S. A. Grigorieva, V. A. Panchenko, N. A. Korenkova, and J. Mielich. The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain, J. Atmos. Sol.-Terr. Phys. 180, 93–105 (2018). https://www.sciencedirect.com/ s-cience/article/abs/pii/S136468261730617X.
https://doi.org/10.1016/j.jastp.2017.10.014

22. Space Weather, Ed. by P. Song, H. Singer, and G. Siscoe (American Geophysical Union, Washington, DC, 2001), in Ser.: Geophysical Monograph, Vol. 125.

23. D. Vijaya Lekshmi, N. Balan, S. Tulasi Ram, and J. Y. Liu. Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles, J. Geophys. Res.: Space Phys. 116, A11328 (2011).
https://doi.org/10.1029/2011JA017042

24. O. S. Yakovchouk, K. Mursula, L. Holappa, I. S. Veselovsky, and A. Karinen. Average properties of geomagnetic storms in 1932–2009, J. Geophys. Res.: Space Phys. 117 (A3) (2012).
https://doi.org/10.1029/2011JA017093

25. M. Yamauchi, T. Sergienko, C.-F. Enell, A. Schillings, R. Slapak, M. G. Johnsen, A. Tjulin, and H. Nilsson. Ionospheric response observed by EISCAT during the 6–8 September 2017 space weather event: Overview, Space Weather 16, 1437–1450 (2018). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001937.
https://doi.org/10.1029/2018SW001937

26. N. A. Zolotukhina, V. I. Kurkin, and N. M. Polekh. Ionospheric disturbances over East Asia during intense December magnetic storms of 2006 and 2015: Similarities and differences, Sol.-Terr. Phys. 4 (3), 28–42 (2018).
https://doi.org/10.12737/stp-43201805