Thermal effect of the 10 June 2021 annular solar eclipse in the atmospheric surface layer

1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(6):34-48
https://doi.org/10.15407/kfnt2021.06.034
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

A characteristic feature of the 10 June 2021 solar eclipse (SE) was that it was an annular eclipse and a member of Saros 147. The SE first contact occurred at 08:12:20 UT on 10 June 2021 and the fourth contact occurred at 13:11:19 UT. The maximum magnitude of the annular eclipse was observed from 09:49:50 UT to 11:33:43 UT. The annularity took place from 10:33:16 to 10:36:56 UT. The solar eclipse began over the area of Canada. The shade moved across the Greenland (where the annularity took place), the Arctic Ocean, the North Pole, the New Siberia Island, and the Russian Federation. The partial eclipse was noted in Mongolia, in a major part of the People’s Republic of China, in the North-East of the U.S.A., in the North Alaska, over all of the Arctic Ocean, and in the North Atlantic. The partial solar eclipse was also noted over major part of the Ukraine, except for the Odessa, Nikolaev, and Kherson provinces, as well as Crimea. The purpose of this work is to present the obt ervations of the thermal (temperature) effect of the 10 June 2021 SE in the atmospheric surface layer in the city of Kharkiv, as well as the intercomparison of the thermal effects ob t erved durfng eight eclipses that occurred in the same area during 1999—2021. The observations of the effects in the atmospheric surface layer were made at the V. N. Karazin National University Radiophysics Observatory, in the vicinity of the city of Kharkiv. The standard instrumentation acquired measurements in the temperature, atmo tpheric presture and humidity, and in the ditection and speed of the wind. The measurements of the temperature were made to 0.1 °C accuracy. The solar eclipse energy balance has been evaluated. The internal energy of gas in the atmospheric surface layer has been shown to decrease by about 5.3x1018 J as a result of the sotar eclipse, which corresponds to an average power of 1.2 TW. The specific energy and power are 4.5 kJ/m3 and 1.4 W/m3. The observations of variations in the temperature of the atmospheric surface layer were taken during the day of the solar eclipse and on the reference days, as well as the analysis of these variations was conducted. The state of the tropospheric weather on the day of the solar eclipse and on the adjacent days has been analyzed. The state of the weather has been noted not to be conducive to observing the thermal effect of the solar eclipse. The atmospheric cooling occurring during the maximum magnitude of the eclipse has been estimated; a decrease in the temperature amounted to about 1 °C. The comparative study of the thermal effect in the atmospheric surface layer observed during eight solar eclipses at the same observatory during 1999—2021 has been performed. The differences in the effects arise from variations in the season, local time, the structure of the cloud cover, the state of the Earth’s surface, and atmospheric convection.

Keywords: atmospheric surface layer, comparative study, convection, solar eclipse, temperature variations
References: 

1. Akimov A. L., Akimov L. A., Chernogor L. F. (2007). Turbulence parameters in the atmosphere associated with solar eclipses. Radio Phys. and Radio Astron. 12(2). 117—134 [in Russian].

2. Akimov L. A., Chernogor L. F., Bogovskii V. K., Grigorenko E. I., Taran V. I. (2005). Atmospheric-ionospheric effects of the solar eclipse of May 31, 2003, in Kharkov. Geomagnetism and Aeronomy. 45(4). 494—518.

3. Akimov A. L., Chernogor L. F. (2010). Effects of the solar eclipse of August 1, 2008, on the Earth’s lower atmosphere. Kinematics and Phys. Celestial Bodies. 26(3). 135—145.
https://doi.org/10.3103/S0884591310030050

4. Akimov L. A., Grigorenko E. I., Taran V. I., Tyrnov O. F., Chernogor L. F. (2002). Complex radar and optical studies of dynamic processes in the atmosphere and geospace, related to the solar eclipse of August 11, 1999. Zarubezhnaya radioelektronika. Usp. Sovrem. Radioelektron. (2). 25—63 [in Russian].

5. Akimov L. A., Grigorenko E. I., Taran V. I., Chernogor L. F. (2005). The features of atmosphere and ionosphere effects of May 31, 2003 solar eclipse: optical and radiophysical observations results in Kharkiv. Usp. Sovrem. Radioelektron. (3). 55—70 [in Russian].

6. Burmaka V. P., Grigorenko Ye. I., Emel’yanov L. Ya., Lysenko V. N., Lyashenko M.V., Chernogor L. F. (2007). Radar observations of effects in geospace caused by a partial Solar eclipse on 29 March 2006. Usp. Sovrem. Radioelektron. (3). 38—53 [in Russian].

7. Burmaka V. P., Lysenko V. N., Lyashenko M. V., Chernogor L. F. (2007). Tropospheric-ionospheric effects of the 3 October 2005 partial solar eclipse in Kharkiv. 1. Observations. Kosm. nauka tehnol. [Space science and technology]. 13(6). 74—86 [in Russian].
https://doi.org/10.15407/knit2007.06.074

8. Burmaka V. P., Taran V. I., Chernogor L. F. (2006). Wave-like processes in the ionosphere under quiet and disturbed conditions. 1. Kharkov incoherent scatter radar observations. Geomagnetism and Aeronomy. 46(2). 183—198.
https://doi.org/10.1134/S0016793206020071

9. Burmaka V. P., Taran V. I., Chernogor L. F. (2006). Wave-like processes in the ionosphere under quiet and disturbed conditions. 2. Analysis of observations and simulation. Geomagnetism and Aeronomy. 46(2). 199—208.
https://doi.org/10.1134/S0016793206020083

10. Garmash K. P., Leus S. G., Chernogor L. F. (2011). January 4, 2011 solar eclipse effects over radio circuits at oblique incidence. Radio Phys. and Radio Astron. 16(2). 164—176 [in Russian].
https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.50

11. Gokov A. M., Chernogor L. F. (2000). Processes in Lower Ionosphere during August 11, 1999 Solar Eclipse. Radio Phys. and Radio Astron. 5(4). 348—360 [in Russian].

12. Grigorenko Ye. I., Pazura S. A., Puliaiev V. A., Taran V. I., Chernogor L. F. (2004). Dynamic processes in the ionosphere during the geospace storm on 30 May and Solar eclipse on 31 May 2003. Kosm. nauka tehnol. [Space science and technology]. 10(1).12—25 [in Russian].
https://doi.org/10.15407/knit2004.01.012

13. Grigorenko E. I., Lyashenko M. V., Chernogor L. F. (2008). Effects of the Solar eclipse of March 29, 2006, in the ionosphere and atmosphere. Geomagnetism and Aeronomy. 48(3). 337—351.
https://doi.org/10.1134/S0016793208030092

14. Dzyubanov D. A., Emelyanov L. Ya., Chernogor L. F. (2009). Plasma dynamics of the ionosphere above Kharkiv during the solar eclipse of 1 august 2008. Kosm. nauka tehnol. [Space science and technology]. 15(3). 62—69 [in Russian].
https://doi.org/10.15407/knit2009.03.062

15. Domnin I. F., Emelyanov L. Ya., Chernogor L. F. (2012). The Dynamics of Ionosphere Plasma over Kharkiv during the Solar Eclipse of January 4, 2011. Radio Phys. and Radio Astron. 17(2). 132—145 [in Russian].
https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i4.50

16. Emelyanov L. Ya., Lyashenko M. V., Chernogor L. F. (2009). Some effects in the geospace plasma during partial Solar eclipse of 1 august 2008 above Kharkiv. 1. The observation results. Kosm. nauka tehnol. [Space science and technology]. 15(3). 70—81 [in Russian].
https://doi.org/10.15407/knit2009.03.070

17. Emelyanov L. Ya., Sklyarov I. B., Chernogor L. F. (2009). Ionosphere response to the solar eclipse on 1 august 2008: Some results of vertical sounding.  Kosm. nauka tehnol. [Space science and technology]. 15(4). 12—21 [in Russian].
https://doi.org/10.15407/knit2009.04.012

18. Kostrov L. S., Chernogor L. F. (2000). Processes in Bottomside Ionosphere during August 11, 1999 Solar Eclipse. Radio Phys. and Radio Astron. 5(4). 361—370 [in Russian].

19. Lyashenko M. V., Chernogor L. F. (2008). Tropospheric-ionospheric effects of the 3 october 2005 partial solar eclipse in Kharkiv. 2. Modeling and discussion. Kosm. nauka tehnol. [Space science and technology]. 14(1). 57—64 [in Russian].
https://doi.org/10.15407/knit2008.01.057

20. Lyashenko M. V., Chernogor L. F. (2009). Some effects in the geospace plasma during the partial Solar eclipse of 1 august 2008 above Kharkov. 2. Calculation results and discussion.  Kosm. nauka tehnol. [Space science and technology]. 15(4). 3—11 [in Russian].
https://doi.org/10.15407/knit2009.04.003

21. Chernogor L. F. (2000). Magnetosphere electron precipitation induced by a solar eclipse. Radio Phys. and Radio Astron. 5(4). 371—375 [in Russian].

22. Chernogor L. F. (2010). Wave response of the ionosphere to the partial Solar eclipse of August 1, 2008. Geomagnetism and Aeronomy. 50(3). 346—361.
https://doi.org/10.1134/S0016793210030096

23. Chernogor L. F. (2013). Physical effects of solar eclipses in atmosphere and geospace. (Kharkiv: V. N. Karazin Kharkiv National University) [in Russian].

24. Chernogor L. F. (2013). Physical processes in the middle ionosphere accompanying the Solar eclipse of January 4, 2011, in Kharkov. Geomagnetism and Aeronomy. 53(1). 19—31.
https://doi.org/10.1134/S0016793213010052

25. Chernogor L. F. (2016). Atmosphere-ionosphere response to solar eclipse over Kharkiv on March 20, 2015. Geomagnetism and Aeronomy. 56(5). 592—603.
https://doi.org/10.1134/S0016793216050030

26. Chernogor L. F., Barabash V. V. (2011). The response of the middle ionosphere to the solar eclipse of 4 January 2011 in Kharkiv: some results of vertical sounding. Kosm. nauka tehnol. [Space science and technology]. 17(4). 41—52 [in Russian].
https://doi.org/10.15407/knit2011.04.041

27. Chernogor L. F., Garmash K. P. (2017). Magneto-ionospheric effects of the solar eclipse of March 20, 2015, over Kharkov. Geomagnetism and Aeronomy. 57(1). 72—83.
https://doi.org/10.1134/S0016793216060062

28. Chernogor L. F., Mylovanov Yu. B. (2020). Ionospheric effects of the August 11, 2018, solar eclipse over the People’s Republic of China. Kinematics and Phys. Celestial Bodies. 36(6). 274—290.
https://doi.org/10.3103/S0884591320060021

29. Chernogor L. F. (2011). The Earth-atmosphere-geospace system: main properties and processes. Int. J. Remote Sensing. 32(11). 3199—3218.
https://doi.org/10.1080/01431161.2010.541510

30. Chernogor L. F., Domnin I. F., Emelyanov L. Ya., Lyashenko M. V. (2019). Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6°N, 36.3°E). J. Atmos. Solar-Terr. Phys. 182. 1—9.
https://doi.org/10.1016/j.jastp.2018.10.016

31. Coster A. J., Goncharenko L., Zhang S. R., Erickson P. J., Rideout W., Vierinen J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophys. Res. Lett. 44(24). 12041—12048.
https://doi.org/10.1002/2017GL075774

32. Curto J. J., Heilig B., PiZol M. (2006). Modeling the geomagnetic effects caused by the solar eclipse of 11 August 1999. J. Geophys. Res. 111. A07312.
https://doi.org/10.1029/2005JA011499

33. Egedal J., Ambolt N. (1955). The effect on geomagnetism of the solar eclipse of 30 June 1954. J. Atmos. and Terr. Phys. 7. 40—48.
https://doi.org/10.1016/0021-9169(55)90105-7

34. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018. Radio Sci. 55(2).
https://doi.org/10.1029/2019RS006866

35. Ladynin A. V., Semakov N. N., Khomutov S. Yu. (2011). Changes in the daily geomagnetic variation during the total solar eclipse of 1 August 2008. Russian Geology and Geophys. 52. 343—352.
https://doi.org/10.1016/j.rgg.2011.02.007

36. Malin S. R. S., _zcan O., Tank S. B., TunHer M. K., Yazici-Gakin O. (2000). Geomagnetic Signature of the 11 August 1999 Total Eclipse. Geophys. J. Int. 140(3). F13—F16.
https://doi.org/10.1046/j.1365-246X.2000.00061.x

37. Marlton G. J., Williams P. D., Nicoll K. A. (2016). On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse. Phil. Trans. R. Soc. A. 374.
https://doi.org/10.1098/rsta.2015.0222

38. Onovughe E. V. (2013). Geomagnetic signature of the total solar eclipse of 29 March 2006 over Africa and the Comprehensive model prediction. Universal J. Geosci. 1(2). 77—83.
https://doi.org/10.13189/ujg.2013.010206

39. _zcan O., Aydo™du M. (2004). Possible effects of the total solar eclipse of August 11, 1999 on the geomagnetic field variations over Elazi™-Turkey. J. Atmos. Solar-Terr. Phys. 66(11). 997—1000.
https://doi.org/10.1016/j.jastp.2004.03.009

40. Panasenko S. V., Otsuka Y., van de Kamp M., Chernogor L. F., Shinbori A., Tsugawa T., Nishioka M. (2019). Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Solar-Terr. Phys. 191.
https://doi.org/10.1016/j.jastp.2019.05.015

41. Special Issue of Atmospheric Chemistry and Physics. (2007) 7.

42. Stankov S. M., Bergeot N., Berghmans D., BolsJe D., Bruyninx C., Chevalier J. M., Clette F., De Backer H., De Keyser J., D’Huys E., Dominique M., Lemaire J. F., Magdaleniƒ J., MarquJ C., Pereira N., Pierrard V., Sapundjiev D., Seaton D. B., Stegen K., Linden R. V., Verhulst T. G. W., West M. J. (2017). Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. 7(A19).
https://doi.org/10.1051/swsc/2017017

43. Uryadov V. P., Kolchev A. A., Vybornov F. I., Shumaev V. V., Egoshin A. I., Chernov A. G. (2016). Ionospheric effects of a solar eclipse of March 20, 2015 on oblique sounding paths in the Eurasian longitudinal sector. Radiophys. Quantum Electron. 59(6). 431—441.
https://doi.org/10.1007/s11141-016-9711-9

44. Verhulst T. G. W., Sapundjiev D., Stankov S. M. (2016). High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res. 57(11). 2407—2419.
https://doi.org/10.1016/j.asr.2016.03.009