Energy balance of evanescent acoustic-gravity waves

1Fedorenko, AK, 1Cheremnykh, OK, Kryuchkov, EI, Vlasov, DI
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(4):17-28
https://doi.org/10.15407/kfnt2022.04.017
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

The features of the energy balance of evanescent acoustic-gravity waves in the atmosphere are investigated. In the case of freely propagating AGWs in an ideal isothermal atmosphere (without taking into account dissipation and sources), the average values of the kinetic and potential energy densities are equal to each other over the period. This is true for the acoustic and gravity regions of the acoustic-gravity spectrum. It is shown that, in the evanescent region of the spectrum the average values of the density of the kinetic and potential energies of AGWs over the period are not equal to each other in the general case. The exceptions are the Lamb wave and the Brent-Väisälä oscillations, in which the particles oscillate only along one coordinate (horizontally or vertically). In addition, the kinetic and potential energy densities are equal for the f- and ℽ-modes at the points where they touch the regions of freely propagating waves. An assumption is made regarding the prevailing realization of those evanescent regimes for which the equality of the average values of the kinetic and potential energies is fulfilled.

Keywords: acoustic-gravity wave, energy balance, evanescent wave mode
References: 

1. Dikiy L. A. (1969) Theory of oscillations of the Earth atmosphere. L., Gidrometeoizdat, 196.

2. Klymenko Yu. O., Fedorenko A. K., Kryuchkov E. I., Cheremnykh O. K., Voitsekhovska A. D., Selivanov Y. O., Zhuk I. T. (2021) Identification of Acoustic-Gravity Waves According to the Satellite Measurement Data. Kinematics and Phys. of Celestial Bodies. 37 (6). 273-283 (In Russian).
https://doi.org/10.3103/S0884591321060052

3. Kryuchkov E. I., Fedorenko A. K. (2012) Peculiarities of energy transport in the atmosphere by acoustic gravity waves. Geomagn. Aeron. 52. 235-241 (In Russian).
https://doi.org/10.1134/S0016793212010057

4. Fedorenko A. K. (2010) Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements. Geomagn. Aeron. 50. 107-118.
https://doi.org/10.1134/S0016793210010123

5. Fedorenko A. K., Zakharov I. V. (2012) Specific oscillatory mode in the polar thermosphere. Kosm. nauka tehnol. 18 (2). 26-32.
https://doi.org/10.15407/knit2012.02.026

6. Beer T. (1974) Atmospheric Wave. John Wiley, New York, 300.

7. Cheremnykh O. K., Fedorenko A. K., Kryuchkov E. I., Selivanov Y. A. (2019) Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth's and Solar atmospheres. Ann. Geophys. 37 (3), 405-415.
https://doi.org/10.5194/angeo-37-405-2019

8. Gossard E., Hooke W. (1975) Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. Elsevier Scientific Publishing Company, 456.

9. Hines C. O. (1960) Internal gravity waves at ionospheric heights. Can. J. Phys. 38. 1441-1481.
https://doi.org/10.1139/p60-150

10. Jones W. L. (1969) Non-divergent oscillations in the Solar Atmosphere. Solar Phys. 7. 204-209.
https://doi.org/10.1007/BF00224898

11. Kundu P. (1990) Fluid Dynamics.Elsevier, New York, 638.

12. Lamb H. (1932) Hydrodynamics. Dover, New York, 362.

13. Roy A., Roy S., Misra A. P. (2019) Dynamical properties of acoustic-gravity waves in the atmosphere. J. Atmos. and Solar-Terr. Phys. 186. 78-81.
https://doi.org/10.1016/j.jastp.2019.02.009

14. Stenflo L., Shukla P. K. (2009) Nonlinear acoustic gravity wave. J. Plasma Phys. 75. 841-847 (2009).
https://doi.org/10.1017/S0022377809007892

15. Tolstoy I. (1963) The theory of waves in stratified fluids including the effects of gravity and rotation. Rev. Modern Phys. 35 (1).
https://doi.org/10.1103/RevModPhys.35.207

16. Vadas S. L., Fritts M. J. (2005) Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J. Geophys. Res. 110, D15103.
https://doi.org/10.1029/2004JD005574

17. Waltercheid R. L., Hecht J. H. (2003) A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance. J. Geophys. Res. 108, D11. 4340.
https://doi.org/10.1029/2002JD002421

18. Yeh K.S., Liu C. H. (1974) Acoustic-gravity waves in the upper atmosphere. Rev. Geophys. Space Phys. 12. 193-216.
https://doi.org/10.1029/RG012i002p00193

19. Zhang S. D., Yi F. (2002) A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. J. Geophys. Res. 107. D14. 1-9.
https://doi.org/10.1029/2001JD000864