Variations in the parameters of the middle-latitude ionosphere over Ukraine during the very moderate magnetic storm on December 18, 2019

Heading: 
Katsko, SV, Emelyanov, LY
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(2):16-33
https://doi.org/10.15407/kfnt2023.02.016
Start Page: Space Physics
Language: Ukrainian
Abstract: 

Many years of research show that weak and moderate magnetic storms can cause significant and unpredictable changes in the state of ionosphere. Questions in ionosphere response forecasting in specific region on changes of space weather stay topical today, because physical processes which take place in ionospheric plasma are variable and complicated. Of particular interest are ionospheric disturbances with variable phases at middle latitudes and their penetration to low latitudes, occurrence of strong ionospheric storms as a result of moderate or weak magnetic storms. The aim of this work is experimental study of variations of ionospheric plasma parameters over Ukraine during the very moderate magnetic storm on December 18, 2019. The study is based on the use of incoherent scattering, which gives the most complete diagnostic capabilities, and the vertical sounding method. Observations were performed at the Ionospheric Observatory of the Institute of Ionosphere (Kharkiv, Ukraine) using incoherent scattering radar. The critical frequency values were obtained using a portable ionosonde. Geophysical data of space weather and magnetosphere were also used. Ionosphere response over Kharkiv on geospace storm on December 18, 2019, was analyzed. We established, that the very moderate storm (Kp = 4) caused a positive ionospheric disturbance. The critical frequency increasing (to 1.6 times) and accordingly the increase of electron density in the F2 layer peak (to 2.6 times) were accompanied by variations in the main ionospheric plasma parameters: the height of the F2 layer peak (decrease by 30 km), electron density over the entire range of studied altitudes of 200…450 km, electron and ion temperatures, and the vertical component of the ionospheric plasma velocity (a decrease in the downward plasma drift velocity Vz at noon after the onset of the magnetic storm with subsequent recovery of the velocity, the occurrence at 15:40 UT at altitudes of 360…420 km of oscillations in Vz variations with a quasi-period of 1 h 50 min, and a weakening of the evening extremum effect in Vz variations with a maximum decrease in velocity at these heights to 40…70 m/s). The substantiation of the action of the following mechanism of a positive ionospheric storm formation is given: in the daytime winter at middle latitude ionosphere, the downward drift of plasma is weakened due to the fact that normal circulation is weakened by the oppositely directed circulation induced by the storm. The very moderate magnetic storm on December 18, 2019 caused significant changes in all parameters of ionospheric plasma over the entire range of studied heights. Obtained data provided additional information for studying of solar-terrestrial relationships and ionosphere state prediction.

Keywords: heliophysical activity, ionospheric disturbance, ionospheric plasma, magnetic storm, positive ionosphere storm, solar-terrestrial relationships
References: 

1. Domnin I. F., Emelyanov L. Ya., Pazyura S. A., Kharitonova S. V., Chernogor L. F. (2011). Dynamic processes in the ionosphere during the very moderate magnetic storm on 20-21 January 2010. Space Sci. and Technol. 17(4). 26-40.
https://doi.org/10.15407/knit2011.04.026

2. Zalizovski A. V., Kashcheyev A. S., Kashcheyev S. B., Koloskov A. V., Lisachen¬ko V. N., Paznukhov V. V., Pikulik I., Sopin A. A., Yampolski Yu. M. (2018). A prototype of a portable coherent ionosonde. Space Sci. and Technol. 24(3). 10-22.

3. Katsko S. V., Emelyanov L. Y., Chernogor L. F. (2021). Features of the ionosphere storm on December 21-24, 2016. Kinematics and Phys. Celestial Bodies. 37(2). 57-74.
https://doi.org/10.15407/kfnt2021.02.057

4. Chepurnyy Ya. N., Tinyakov G. M. (2013). Modeling of rhombic antennas of the ionospheric station "Bazis". Bull. Nat. Techn. Univ. "KhPI": Radiophysics and ionosphere, 33(1066). 25-28.
http://repository.kpi.kharkov.ua/handle/KhPI-Press/5164 [in Russian].

5. Chernogor L. F., Domnin I. F. (2014). Physics of geocosmic storms. Kharkiv: V. N. Ka¬razin Kharkiv Nat. Univ. Publ. [in Russian].

6. Shulha М. O., Kotov D. V., Bogomaz O. V. (2018). Investigation of the ionospheric F2-layer electron density peak reaction to weak geomagnetic storm of December 24, 2017 for different latitudes of the European region. Bull. Nat. Techn. Univ. "KhPI". Ser.: Radiophysic and ionosphere, 43(1319). 18-23. [in Russian].
http://repository.kpi.kharkov.ua/handle/KhPI-Press/43386.

7. Aa E., Zhang S.-R., Erickson P. J., Coster A. J., Goncharenko L. P., Varney R. H., Eastes R. (2021). Salient midlatitude ionosphere-thermosphere disturbances associated with SAPS during a minor but geo-effective storm at deep solar minimum. J. Geophys. Res.: Space Phys. 126(7). e2021JA029509.
https://doi.org/10.1029/2021JA029509

8. Danilov A. D. (2021). Behavior of F2-layer parameters and solar activity indices in the 24th cycle. Adv. in Space Res. 67(1). 102-110.
https://doi.org/10.1016/j.asr.2020.09.042

9. Danilov A. D., Konstantinova A. V. (2020). Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (review). Geomagnetism and Aeronomy, 60(4). 397-420.
https://doi.org/10.1134/S0016793220040040

10. Domnin I. F., Chepurnyy Ya. M., Emelyanov L. Ya., Chernyaev S. V., Kononen¬ko A. F., Kotov D. V., Bogomaz O. V., Iskra D. A. (2014). Kharkiv incoherent scatter facility. Bull. Nat. Techn. Univ. "Kharkiv Politechnic Institute": scientific papers. Series: Radiophysics and ionosphere. Kharkiv: NTU "KhPI", 47 (1089), 28-42. http://nbuv.gov.ua/UJRN/vcpiri_2014_47_7.

11. Emelyanov L. Ya., Lyashenko M. V., Chernogor L. F., Domnin I. F. (2018). Motion of Ionospheric Plasma: Results of Observations above Kharkiv in Solar Cycle 24. Geomagnetism and Aeronomy. 58(4). 533-547.
https://doi.org/10.1134/S001679321802007X

12. Frster M., Jakowski N. (2000). Geomagnetic storm effects on the topside ionosphere and plasmasphere: A compact tutorial and new results. Surveys Geophys. 21(1), 47-87.
https://doi.org/10.1023/A:1006775125220

13. Goncharenko L. P., Foster J. C., Coster A. J., Huang C., Aponte N., Paxton L. J. (2007). Observations of a positive storm phase on September 10, 2005. J. Atmos. Solar. Terr. Phys. 69(10/11). 1253-1272. https://doi.org/10.1016/j.jastp.2006.09.011.

14. Katsko S. V., Emelyanov L. Ya., Chernogor L. F. (2021). Ionosphere response to space weather events on 21-23 March 2017 in the central region of Europe. URSI GASS 2021, Rome, Italy, 28 August-4 September 2021. Conf. Proc.
https://doi.org/10.23919/URSIGASS51995.2021.9560587

15. Kotov D. V., Richards P. G., Truhlk V., Maruyama N., Fedrizzi M., Shulha M. O., Bogomaz O. V., Lichtenberger J., Hernndez-Pajares M., Chernogor L. F., Emelyanov L. Ya., Zhivolup T. G., Chepurnyy Ya. M., Domnin I. F. (2019). Weak magnetic storms can modulate ionosphere plasmasphere interaction significantly: Mechanisms and manifestations at mid-latitudes. J. Geophys. Res.: Space Phys. 124.
https://doi.org/10.1029/2019JA027076

16. Lastovicka J. (2019). Is the relation between ionospheric parameters and solar proxies stable? Geophys. Res. Lett. 46(24), 14208-14213.
https://doi.org/10.1029/2019GL085033