Prediction of maximum of Solar cycle 25: total power at the cycle beginning and in the previous cycle as precursor

Heading: 
1Pishkalo, MI, Vasiljeva, IE
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(4):68-89
https://doi.org/10.15407/kfnt2023.04.068
Language: Ukrainian
Abstract: 

Solar activity, the most famous manifestation of which is sunspots, varies with a period of about 11 years. Two 11-year cycles form the 22-year magnetic cycle of the Sun. Changes in solar activity cause changes in the interplanetary and near-Earth space, affect the Earth and the human environment. The ability to predict solar activity in advance is important both for some practical tasks of cosmonautics and for a better understanding of the nature of those physical processes at the Sun which are responsible for the solar activity. In the work, the interrelationship of the powers (sum of the monthly sunspot numbers in the cycle) of pairs of «even-numbered to odd-numbered» and «odd-numbered to even-numbered» cycles was investigated, and an attempt was made to forecast the maximum of the current solar cycle 25, which began in December 2019, using the value of the total power of the previous solar cycle 24. It was found that there is a significant correlation between the power and amplitude of the odd-numbered cycle and the power of the previous even-numbered cycle (r = 0.897, p = 0.00043 and r = 0.785, p = 0.00715, respectively; if excluding the pair of cycles 4—5). A slightly smaller correlation is observed between the amplitude of the odd-numbered cycle and the amplitude of the previous even-numbered cycle (r = 0.712, p = 0.0209). Regression equations between the relevant parameters were found. The calculated predicted amplitude of the solar cycle 25 is 155.6 ± 42.4 (according to the power of solar cycle 24) and 172.1 ± 46.5 (according to its maximum) in August 2024 and June 2024, respectively. For solar cycles 12 to 24, the relationship of the same parameters was investigated separately in the N- and S-hemispheres. It was also found that in the solar cycle 25 the southern hemisphere will be somewhat more active than the northern one; the predicted maxima in the N- and S-hemispheres are 86.9 ± 41.1 and 91.7 ± 29.7, respectively. The power of the solar cycle in the first 30 months from its beginning is closely correlated (r = 0.83, р = 5*10–7) both with the amplitude of the next maximum of the cycle and with the duration of the rising phase of the cycle. This makes it possible to obtain, in our opinion, the most probable forecast of the maximum of the solar cycle 25 for today, i. e. 136 ± 36 in February 2025. All predictions obtained in this work indicate that the solar cycle 25 will be higher than the previous solar cycle 24.

Keywords: prediction of solar cycle, solar activity, solar cycle, Sun
References: 

1. Vasiljeva I. E., Pishkalo M. I. (2021) History of sun¬spot research and forecast of the maximum of solar cycle 25. Kinemat. fiz. nebesnyh tel. 37(4). 60-78.
https://doi.org/10.15407/kfnt2021.04.060

2. Gnevyshev M. N., Ohl A. I. (1948) On the 22-year cycle of solar activity. Astron. Zhurn., 25(1), 18-20 [in Russian].

3. Yefimenko V., Lozytskyi V. (2022) Prediction of the maximum of the 25th cycle of solar activity based on data on the rate of growth of the number of sunspots. Visn. Kyiv. Univ. Astron. 65(1). 35-39. [In Ukrainian].
https://doi.org/10.17721/BTSNUA.2022.65.35-39

4. Pishkalo M. I. (2008) Preliminary prediction of solar cycles 24 and 25 based on the correlation between cycle parameters. Kinematics and Phys. Celestial Bodies. 24(5). 242-247.
https://doi.org/10.3103/S0884591308050036

5. Pishkalo M. I. (2021) Prediction of solar cycle 25: maximum in the N- and S-hemispheres. Kinemat. fiz. nebesnyh tel. 37(1). 48-56.
https://doi.org/10.15407/kfnt2021.01.048

6. Benson B., Pan W. D., Prasad A., Gary G. A., Hu Q. (2020) Forecasting solar cycle 25 using deep neural networks. Solar Phys. 295(5). 65.
https://doi.org/10.1007/s11207-020-01634-y

7. Bhowmik P., Nandy D. (2018) Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nature Comm. 9(1). 5209.
https://doi.org/10.1038/s41467-018-07690-0

8. Braja R., Verbanac G., Bandi M., Hanslmeier A., Skoki I., Sudar D. (2022) A prediction for the 25th solar cycle maximum amplitude. Astron. Nachr. 343(3). e13960.
https://doi.org/10.1002/asna.202113960

9. Burud D. S., Jain R., Awasthi A. K., Chaudhari S., Tripathy S. C., Gopalswamy N., Chamadia P., Kaushik S. C., Vhatkar R. (2021) Spotless days and geomagnetic index as the predictors of solar cycle 25. Res. Astron. and Astrophys. 21(9). 215.
https://doi.org/10.1088/1674-4527/21/9/215

10. Cameron R. H., Jiang J., Schssler M. (2016) Solar cycle 25: Another moderate cycle? Astrophys. J. Lett. 823(2). L22.
https://doi.org/10.3847/2041-8205/823/2/L22

11. Chowdhury P., Jain R., Ray P. C., Burud D., Chakrabarti A. (2021) Prediction of amplitude and timing of solar cycle 25. Solar Phys. 296(4). 69.
https://doi.org/10.1007/s11207-021-01791-8

12. Clette F., Lefevre L. (2016) The new sunspot number: Assembling all corrections. Solar Phys. 291(9-10). 2629-2651.
https://doi.org/10.1007/s11207-016-1014-y

13. Clette F., Svalgaard L., Vaquero J. M., Cliver E. W. (2014) Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186(1-4). 35-103.
https://doi.org/10.1007/s11214-014-0074-2

14. Courtillot V., Lopes F., Le Moul J. L. (2021) On the prediction of solar cycles. Solar Phys. 296(1). 21.
https://doi.org/10.1007/s11207-020-01760-7

15. Covas E., Peixinho N., Fernandes J. (2019) Neural network forecast of the sunspot butterfly diagram. Solar Phys. 294(3). 24.
https://doi.org/10.1007/s11207-019-1412-z

16. Du Z. (2020) Predicting theshape of solar cycle 25 using a similar-cycle method. Solar Phys. 295(10). 134.
https://doi.org/10.1007/s11207-020-01701-4

17. Du Z. (2020) Predicting the amplitude of solar cycle 25 using the value 39 months before the solar minimum. Solar Phys. 295(10). 147.
https://doi.org/10.1007/s11207-020-01720-1

18. Du Z. (2022) Predicting the maximum amplitude of solar cycle 25 using the early value of the rising phase. Solar Phys. 297(5). 61.
https://doi.org/10.1007/s11207-022-01991-w

19. Du Z. (2022) Evolution of the correlation between the amplitude of the solar cycle and the sunspot number since the previous declining phase in both hemispheres. Solar Phys. 297(9). 117.
https://doi.org/10.1007/s11207-022-02051-z

20. Espua Fontcuberta A., Ghosh A., Chatterjee S., Mitra D., Nandy D. (2023) Forecasting solar cycle 25 with physical model-validated recurrent neural networks. Solar Phys. 298(1). 8.
https://doi.org/10.1007/s11207-022-02104-3

21. Gopalswamy N., Makel Р., Yashiro S., Akiyama S. (2018) Long-term solar activity studies using microwave imaging observations and prediction for cycle 25. J. Atmos. Solar-Terr. Phys. 176. 26-33.
https://doi.org/10.1016/j.jastp.2018.04.005

22. Guo W., Jiang J., Wang J. X. (2021) A dynamo-based prediction of solar cycle 25. Solar Phys. 296(9). 136.
https://doi.org/10.1007/s11207-021-01878-2

23. Hathaway D. H. (2009) Solar cycle forecasting. Space Sci. Rev. 2009. 144(1-4). 401-412.
https://doi.org/10.1007/s11214-008-9430-4

24. Hazra G., Choudhuri A. R. (2020) A new formula for predicting solar cycles. Astrophys. J. 880(2). 113.
https://doi.org/10.3847/1538-4357/ab2718

25. Janssens J. (2021) Prediction of the amplitude of solar cycle 25 using polar faculae observations. J. Space Weather Space Clim. 11. 3.
https://doi.org/10.1051/swsc/2020081

26. Javaraiah J. (2022) Long-term variations in solar activity: Predictions for amplitude and north-south asymmetry of solar cycle 25. Solar Phys. 297(3). 33.
https://doi.org/10.1007/s11207-022-01956-z

doi:10.1007/s11207-022-01956-z
https://doi.org/10.1007/s11207-022-01956-z

27. Jiang J., Wang J.-X., Jiao Q.-R., Cao J.-B. (2018) Predictability of the solar cycle over one cycle. Astrophys. J. 863(2). 159. doi:10.3847/1538-4357/aad197
https://doi.org/10.3847/1538-4357/aad197

28. Kakad B., Kumar R., Kakad A. (2020) Randomness in sunspot number: A clue to predict solar cycle 25. Solar Phys. 295(6). 88. doi:10.1007/s11207-020-01655-7
https://doi.org/10.1007/s11207-020-01655-7

29. Kim Kwee Ng. (2019) Coronal mass ejections, solar cycles and magnetic poles reversal. Amer. J. Astron. and Astrophys. 7(1). 10-17. doi:10.11648/j.ajaa.20190701.12
https://doi.org/10.11648/j.ajaa.20190701.12

30. Kitiashvili I. N. (2020) Application of synoptic magnetograms to global solar activity forecast. Astrophys. J. 890(1). 36.
https://doi.org/10.3847/1538-4357/ab64e7

31. Labonville F., Charbonneau P., Lemerle A. (2019) A dynamo-based forecast of solar cycle 25. Solar Phys. 294(6). 82.
https://doi.org/10.1007/s11207-019-1480-0

32. Li F. Y., Kong D. F., Xie J. L., Xiang N. B., Xu J. C. (2018) Solar cycle characteristics and their application in the prediction of cycle 25. J. Atmos. Solar-Terr. Phys. 181. 110-115.
https://doi.org/10.1016/j.jastp.2018.10.014

33. Miao J., Wang X., Ren T.-L., Li Zh.-T. (2020) Prediction verification of solar cycles 18-24 and a preliminary prediction of the maximum amplitude of solar cycle 25 based on the precursor method. Res. Astron. Astrophys. 20(1). 4.
https://doi.org/10.1088/1674-4527/20/1/4

34. McIntosh S. W., Chapman S., Leamon R. J., Egeland R., Watkins N. W. (2020) Overlapping magnetic activity cycles and the sunspot number: forecasting sunspot cycle 25 amplitude. Solar Phys. 295(12). 163.
https://doi.org/10.1007/s11207-020-01723-y

35. Nandy D. (2021) Progress in solar cycle predictions: sunspot cycles 24-25 in perspective. Solar Phys. 296(3). 54.
https://doi.org/10.1007/s11207-021-01797-2

36. Okoh D. I., Seemala G. K., Rabiu A. B., Uwamahoro J., Habarulema J. B., Aggar¬wal M. (2018) A hybrid regression-neural network (HR-NN) method for forecasting the solar activity. Space Weather. 16(9). 1424-1436.
https://doi.org/10.1029/2018SW001907

37. Pesnell W. D. (2012) Solar cycle predictions (Invited review). Solar Phys. 281(1). 507-532.
https://doi.org/10.1007/s11207-012-9997-5

38. Pesnell W. D. (2016) Predictions of solar cycle 24: How are we doing? Space Weather. 14(1). 10.
https://doi.org/10.1002/2015SW001304

39. Pesnell W. D. (2020) Lessons learned from predictions of Solar Cycle 24. J. Space Weather Space Clim. 10. 60.
https://doi.org/10.1051/swsc/2020060

40. Pesnell W. D., Schatten K. H. (2018) An early prediction of the amplitude of solar cycle 25. Solar Phys. 293(7). 112.
https://doi.org/10.1007/s11207-018-1330-5

41. Petrovay K. (2010) Solar cycle prediction. Living Rev. Solar Phys. 7(6). 59.
https://doi.org/10.12942/lrsp-2010-6

42. Petrovay K. (2020) Solar cycle prediction. Living Rev. Solar Phys. 17(1). 2.
https://doi.org/10.1007/s41116-020-0022-z

43. Pishkalo M. I. (2014) Prediction of solar cycle 24 using sunspot number near the cycle minimum. Solar Phys. 289(5). 1815-1829.
https://doi.org/10.1007/s11207-013-0398-1

44. Podladchikova T., Jain Sh., Veronig A. M., Sutyrina O., Dumbovi M., Clette F., Potzi W. (2022) Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude. Astron. and Astrophys. 663. A88.
https://doi.org/10.1051/0004-6361/202243509

45. Sarp V., Kilcik A., Yurchyshyn V., Rozelot J. P., zgc A. (2018) Prediction of solar cycle 25: a non-linear approach. Mon. Notic. Roy. Astron. Soc. 481(3). 2981-2985.
https://doi.org/10.1093/mnras/sty2470

46. Thompson R. J. (1993) A technique for predicting the amplitude of the solar cycle. Solar Phys. 148(2). 383-388.
https://doi.org/10.1007/BF00645097

47. Veronig A. M., Jain S., Podladchikova T., Potzi W., Clette F. (2021) Hemispheric sunspot numbers 1874-2020. Astron. and Astrophys. 652. A56.
https://doi.org/10.1051/0004-6361/202141195

48. Waldmeier M. (1935) Neue Eigenschaften der Sonnenfleckenkurve. Astron. Mitt. Zurich. 14(133). 105-130.

49. Wang Q.-J., Li J.-C., Guo L.-Q. (2021) Solar cycle prediction using a long short-term memory deep learning model. Res. Astron. and Astrophys. 21(1). 12.
https://doi.org/10.1088/1674-4527/21/1/12

50. Werner R., Guineva V. (2020) Forecasting sunspot numbers for solar cycle 25 using autoregressive models for both hemispheres of the Sun. C. R. Acad. Bulg. Sci. 73(1). 82-89. doi:10.7546/CRABS. 2020.01.10
https://doi.org/10.7546/CRABS

51. Zhu H., Zhu W., He M. (2022) Solar cycle 25 prediction using an optimized long short- term memory mode with F10.7. Solar Phys. 297(12). 157.
https://doi.org/10.1007/s11207-022-02091-5